This page was created by the IDL library routine
mk_html_help2
.
Last modified: Thu Oct 24 15:35:45 2019.
matrix_array_lib Helpful functions for dealing with arrays of 3x3 matrixes (Nx3x3) $LastChangedBy: aaflores $ $LastChangedDate: 2016-04-29 17:15:55 -0700 (Fri, 29 Apr 2016) $ $LastChangedRevision: 20987 $ $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/general/cotrans/special/matrix_array_lib.pro $
(See general/cotrans/special/matrix_array_lib.pro)
PROCEDURE: TCROSSP Purpose: Vectorized routine to calculate the cross product of two tplot variables containing arrays of 3d vectors and storing the result in a tplot variable. Also, can perform vectorized cross product on arrays. Arguments: v1: The name of the tplot variable or an Nx3 length array storing the first vector in the cross product v2: The name of the tplot variable or an Nx3 length array storing the second vector in the cross product newname(optional): the name of the output tplot variable error(optional): named variable in which to return error state of the computation. 1 = success 0 = failure diff_tsize_ok = if set, allows the arrays to have a different number of elements in time, uses data_cut, which interpolates the data in v2 to the number of times given by v1 Outputs(optional): out: Returns output in array format, if this argument is present, no tplot variable will be created Example: TPLOT; tcrossp,'tvarname1','tvarname2' Array: tcrossp,array_2d_1,array_2d_2,out=array_output NOTES:
(See general/cotrans/special/tcrossp.pro)
PROCEDURE: TDOTP Purpose: Vectorized routine to calculate the dot product of two tplot variables containing arrays of vectors and storing the results in a tplot variable Arguments: v1: The name of the tplot variable storing the first vector in the dot product v2: The name of the tplot variable storing the second vector in the dot product newname(optional): the name of the output tplot variable error(optional): named variable in which to return the error state of the computation. 1 = success 0 = failure NOTES:
(See general/cotrans/special/tdotp.pro)
Function: tinterpol_mxn Purpose: Performs interpolation on tplot variables. Interpolates xv_tvar to match uz_tvar. Can also interpolate with non-tvar types and return non-tvar types. (Helpful for interpolating matrices and time-series vectors) This function works on any n or nxm dimensional vectors. Interpolation always occurs along first dimension(time) Arguments: xv_tvar(source) = tplot variable to be interpolated, the y component can have any dimesions, can use globbing to interpolate many values at once uses x component for x abcissa values Can also pass in a struct with the same format as the data component for a tplot variable: {x:time_array,y:data_array,v:optional_y_axis_abcissas} uz_tvar(target) = tplot variable that V will be fit to uses x component for u abcissa values. Can also pass in an array of time values rather than a tplot variable. newname = output tplot variable name(optional) defaults to xv_tvar+'_interp'. If you want vector output, use the keyword "out" suffix = a suffix other than interp you can use, particularily useful when using globbing overwrite=set this variable if you just want the original variable overwritten instead of using newname or suffix Use only newname or suffix or overwrite. If you combine them the naming behavior may be erratic /LINEAR = set this keyword to specify linear interpolation(this is the default behavior) /QUADRATIC = set this keyword to specify quadratic interpolation /SPLINE = set this keyword to specify spline interpolation /NEAREST_NEIGHBOR = set this keyowrd to specify repeat nearest neighbor 'interpolation' /NO_EXTRAPOLATE = set this keyword to prevent extrapolation of data values in V passed it's start and end points /NAN_EXTRAPOLATE = set this keyword to extrapolate past the endpoints using NaNs as a fill value /REPEAT_EXTRAPOLATE = set this keyword to repeat nearest value past the endpoints /IGNORE_NANS = set this keyword to remove nans in the data before interpolation ERROR(optional): named variable in which to return the error state of the computation. 1 = success 0 = failure Outputs(optional): out: Returns output as a data struct. If this argument is present, no tplot variable will be created. Note that only one result can be returned through this keyword.(ie You can't use this keyword with tplot name-globbing) CALLING SEQUENCE; tinterpol_mxn,'tplot_var1','tplot_var2',newname='tplot_var_out' tinterpol_mxn,'tplot_var1','tplot_var2',/NO_EXTRAPOLATE tinterpol_mxn,'tplot_var1','tplot_var2',/SPLINE tinterpol_mxn,'tplot_var1','tplot_var2',out=out_data_struct ;doesn't create tplot variable, instead returns struct tinterpol_mxn,'tplot_var1',time_array ;This calling method doesn't require second tplot variable tinterpol_mxn,{x:time_array,y:data_array},'tplot_var2' ;This calling method doesn't require first tplot variable tinterpol_mxn,{x:time_array,y:data_array,v:y_scale_vals},time_array,out=out_data_struct ; You can mix and match calling types. This calling method doesn't use any tplot variables Output: an N by D1 by D2 by ... array stored in an output tplot variabel Notes: Uses a for loop over D1*D2*..., but I'm operating under the assumption that D1*D2... << M (D1 * D2 *... is waaaay less than M) It uses a little bit of modular arithmatic so this function is generalized to any array dimensionality(IDL limits at 8) Examples: if the input is an array of 3-d vectors(say 1,1,1 and 2,2,2) and we want 3 vectors out the output is 1,1,1 1.5 1.5 1.5 2,2,2 if the input is an array of 3x3 matrices(say all ones and all twos) and we want three matrices then output is all 1s all 1.5s all 2s $LastChangedBy: pcruce $ $LastChangedDate: 2016-10-31 11:32:53 -0700 (Mon, 31 Oct 2016) $ $LastChangedRevision: 22236 $ $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/general/cotrans/special/tinterpol_mxn.pro $
(See general/cotrans/special/tinterpol_mxn.pro)
PROCEDURE: TNORMALIZE Purpose: Vectorized routine to normalize all the vectors stored in a tplot variable Arguments: v: The name or number of the tplot variable storing the vectors to be normalized, or an array of vectors to be normalized. NOTE, if the input is not a tplot variable, this routine will not generate a tplot variable for output newname(optional): The name of the output tplot variable. Defaults to v+'_normalized' error(optional): Named variable in which to return the error state of the computation, 1 = success, 0 = failure out(optional): If set to a named variable, the output will be stored in out, rather than a tplot variable. NOTES: $LastChangedBy: aaflores $ $LastChangedDate: 2012-01-23 16:21:34 -0800 (Mon, 23 Jan 2012) $ $LastChangedRevision: 9592 $ $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/general/cotrans/special/tnormalize.pro $
(See general/cotrans/special/tnormalize.pro)
NAME: ttensor_rotate PURPOSE: Wrapper for tvector_rotate, to allow rotation of pressure and momentum flux tensors defined as ntimes, 6 arrays CALLING SQEUENCE: (same as tvector_rotate) Using tplot variables: ttensor_rotate, 'matrix_var', 'tensor_var' [,newname='out_var'] [,invert=invert] [,suffix=suffix] [,error=error] [,/vector_skip_nonmonotonic] [,/matrix_skip_nonmonotonic] Arguments: mat_var_in: The name of the tplot variable storing input matrices The y component of the tplot variable's data struct should be an Mx3x3 array, storing a list of transformation matrices. tens_var_in: The name of tplot variable(s) storing a pressure or mf tensor The y component of the tplot variable's data struct should be an Nx6 array. newname(optional): the name of the output variable, defaults to tens_var_in + '_rot' Newname should only be used if a single tensor variable is rotated suffix: The suffix to be appended to the tplot variable(s) (Default: '_rot') error(optional): named variable in which to return the error state of the computation. 1 = success 0 = failure NOTES: the program will change the input tensor or tplot variable(s) to mx3x3 inputs suitable for tvector_rotate and reset at the end SEE ALSO: tvector_rotate.pro, mva_matrix_make.pro, fac_matrix_make.pro,rxy_matrix_make $LastChangedBy: jimm $ $LastChangedDate: 2019-02-05 15:58:04 -0800 (Tue, 05 Feb 2019) $ $LastChangedRevision: 26557 $ $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/general/cotrans/special/ttensor_rotate.pro $
(See general/cotrans/special/ttensor_rotate.pro)
Procedure: tvector_rotate Purpose: Rotates array data by a set of coordinate transformation matrices and outputs tplot variables. This is designed mainly for use with fac_matrix_make.pro and minvar_matrix_make, but can be used for more general purposes Assuming that the data array and matrix time-grids match, this code is the vectorized equivalent to: for i=0,n_ele-1 do out[i,*]=reform(reform(m[i,*,*])#reform(v[i,*])) If the target is also an array of matrices then it is equivalent to: for i=0,n_ele-1 do out[i,*,*] = reform(m[i,*,*]) # reform(v[i,*,*]) If the target is a tensor, KEYWORD_SET = tensor_rotation then it is equivalent to for i=0,n_ele-1 do out[i,*,*] = reform(m[i,*,*]) # reform(v[i,*,*]) # transpose(reform(m[i, *, *])) Setting the "invert" keyword will produce results that are equivalent to using the '##' operation in the loop above. Warning: The transformation matrices generated by fac_matrix_make,thm_fac_matrix_make, and minvar_matrix_make are defined relative to a specific coordinate system. This means that if you use vectors in one coordinate system to generate the rotation matrices they will only correctly transform data from that coordinate system into the functional coordinate system. For example if you use magnetic field data in gsm to generate Rgeo transformation matrices using fac_matrix_make then the array being provided to tvector rotate to be transformed by those matrices should only be in gsm coordinates. CALLING SEQUENCE: Using tplot variables: tvector_rotate, 'matrix_var', 'vector_var' [,newname='out_var'] [,invert=invert] [,suffix=suffix] [,error=error] [,/vector_skip_nonmonotonic] [,/matrix_skip_nonmonotonic] [,/tensor_rotate] Using arrays: tvector_rotate, matrix_array, vector_array, newname=output_array ... Arguments: mat_var_in: The name of the tplot variable storing input matrices The y component of the tplot variable's data struct should be an Mx3x3 array, storing a list of transformation matrices. Array or tensor data can be input as well and should be an Mx3x3 array vec_var_in: The name of a tplot variable storing an array of input vectors. The tplot variable may also contain matrices. You can use globbing to rotate several tplot variables storing vectors with a single matrix. The y component of the tplot variable's data struct should be an Nx3 array. Array data can also be input and should be an Nx3x3 array. newname(optional): the name of the output variable, defaults to vec_var_in + '_rot' If you use type globbing in the vector variable If array data is used this variable should be declared. suffix: The suffix to be appended to the tplot variables that the output matrices will be stored in. (Default: '_rot') error(optional): named variable in which to return the error state of the computation. 1 = success 0 = failure invert(optional): If matrix_var naturally transforms vector_var from Coord A to B, (ie Vb = M#Va where # denotes matrix multiplication) then setting this keyword will transform vector_var from Coord B to A( ie Va = M^T#Vb This is done by transposing the input matrices, as it is a property of rotation matrices that M#M^T = I and M^T#M = I(ie M^T = M^-1) vector_skip_nonmonotonic(optional): Removes any vector data with non-ascending or repeated timestamps before SLERPing matrices rather than throwing an error. matrix_skip_nonmonotonic(optional): Removes any vector data with non-ascending timestamps before SLERPing matrices rather than throwing an error. tensor_rotate: set if the input is a pressure, or momentum flux tensor, requiring an extra matrix multiplication Notes: 1. mat_var_in should store rotation or permutation matrices. (ie the columns of any matrix in mat_var_in should form an orthonormal basis) tvector_rotate will test and warn if input matrices are inalid. Permutation matrices are allowed so that coordinates can be transformed from right to left handed systems and vice-versa. This is verified via the following contraints. M#M^-1 = I and abs(determ(m)) = 1 2. transformation matrices generally only transform from one particular basis to another particular basis. Since tvector_rotate as no way to test that vector_var is in the correct basis, you need to be very careful that vector_var has the correct coordinate system and representation so that it can correctly transform the data. 3. If M!=N, then M must be >= 2 (where M,N refer to the dimensions of the input variables.) 4. Also If the x components of mat_var_in and vec_var_in data structs do not match then, the matrices will be interpolated to match the cadence of the data. Interpolation is done by turning the matrices into quaternions and performing spherical linear interpolation. As noted above this interpolation behavior will not be predictable if the matrices do anything other than rotate. 5. If the timestamps of mat_var_in are not monotonic(ascending or identical) or if the timestamps vec_var_in are not strictly monotonic(always ascending) the program will not work correctly in the event that matrix SLERPing is required. Set the keywords vector_skip_nonmonotonic or matrix_skip_nonmonotonic to have the routine remove the non-monotonic data when generating the output. Alternatively, if matrix and vector timestamps match no SLERPing will be required, also fixing nonmonotonicities manually will fix the problem. SEE ALSO: mva_matrix_make.pro, fac_matrix_make.pro,rxy_matrix_make $LastChangedBy: jimm $ $LastChangedDate: 2019-07-24 12:01:53 -0700 (Wed, 24 Jul 2019) $ $LastChangedRevision: 27496 $ $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/general/cotrans/special/tvector_rotate.pro $
(See general/cotrans/special/tvector_rotate.pro)