;+ ; matrix_array_lib ; ; Helpful functions for dealing with arrays of 3x3 matrixes (Nx3x3) ; ; ; $LastChangedBy: aaflores $ ; $LastChangedDate: 2016-04-29 17:15:55 -0700 (Fri, 29 Apr 2016) $ ; $LastChangedRevision: 20987 $ ; $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/general/cotrans/special/matrix_array_lib.pro $ ;- ;helper function ;used to determine if values are equal within some standard of computational error function ctv_err_test,vals,val compile_opt idl2, hidden err = 1d-5 return,(vals ge val-err and vals le val+err) end ;helper function ;returns the determinant of a list of 3x3 matrices function ctv_determ_mats,m compile_opt idl2, hidden return,reform(m[*,0,0] * m[*,1,1] * m[*,2,2] $ -m[*,0,0] * m[*,1,2] * m[*,2,1] $ -m[*,0,1] * m[*,1,0] * m[*,2,2] $ +m[*,0,1] * m[*,1,2] * m[*,2,0] $ +m[*,0,2] * m[*,1,0] * m[*,2,1] $ -m[*,0,2] * m[*,1,1] * m[*,2,0]) end ;helper function ;determines if a list of 3x3 matrices are identity matrices ;will return the indexes of the identity matrices in the list of matrices function ctv_identity_mats,m compile_opt idl2, hidden dim = dimen(m) out = lonarr(dim[0]) return,ctv_err_test(m[*,0,0],1) and ctv_err_test(m[*,0,1],0) and ctv_err_test(m[*,0,2],0) and $ ctv_err_test(m[*,1,0],0) and ctv_err_test(m[*,1,1],1) and ctv_err_test(m[*,1,2],0) and $ ctv_err_test(m[*,2,0],0) and ctv_err_test(m[*,2,1],0) and ctv_err_test(m[*,2,2],1) end ;helper function ;vectorized multiplication of two lists of 3x3 matrices ;effectively m1 # m2 function ctv_mm_mult,m1,m2, second_type=second_type compile_opt idl2, hidden type = keyword_set(second_type) ? size(m2,/type) : size(m1,/type) out = make_array(dimen(m1),type=type) out[*,0,0] = total(m1[*,0,*] * m2[*,*,0],3) out[*,1,0] = total(m1[*,1,*] * m2[*,*,0],3) out[*,2,0] = total(m1[*,2,*] * m2[*,*,0],3) out[*,0,1] = total(m1[*,0,*] * m2[*,*,1],3) out[*,1,1] = total(m1[*,1,*] * m2[*,*,1],3) out[*,2,1] = total(m1[*,2,*] * m2[*,*,1],3) out[*,0,2] = total(m1[*,0,*] * m2[*,*,2],3) out[*,1,2] = total(m1[*,1,*] * m2[*,*,2],3) out[*,2,2] = total(m1[*,2,*] * m2[*,*,2],3) return,out end ;helper function ;verifies whether a list of matrices ;contains valid rotation matrices. ;This is determined using 2 constraints. ;#1 Where determ(matrix) eq 1 ;#2 Where matrix#transpose(matrix) eq I ;returns 0 if the matrices use a mixed system ;returns 1 if there are no valid mats ;returns 2 if the data are all nans ;returns 3 if there are some invalid mats ;returns 4 if there are some nans ;returns 5 win! function ctv_verify_mats,m compile_opt idl2, hidden identity_mats = ctv_identity_mats(ctv_mm_mult(m,transpose(m,[0,2,1]))) ;make sure matrix is self-inverting and the determinate is either 1 in all cases or -1 in all cases idx = where(ctv_err_test(ctv_determ_mats(m),1) and identity_mats,c_right) idx = where(ctv_err_test(ctv_determ_mats(m),-1) and identity_mats,c_left) idx = where(~finite(ctv_determ_mats(m)),c_nan) dim = dimen(m) if c_left ne 0 && c_right ne 0 then begin ;mixed system return,0 endif else if (c_left eq 0 && c_right eq 0) then begin ;all matrices fail return,1 endif else if c_nan eq dim[0] then begin ;all nans return,2 endif else if (c_left+c_right+c_nan lt 0) then begin ;some matrices fail return,3 endif else if c_nan ne 0 then begin ;some nans return,4 endif else begin ;all mats are rotation mats and there is no missing data return,5 endelse end ;is this a set of left-handed permutation matrices? function ctv_left_mats,m compile_opt idl2, hidden t = where(ctv_err_test(ctv_determ_mats(m),-1),c) if c gt 0 then return,1 else return,0 end ;turns a 3x3 matrix with a left-handed basis into a right-handed basis and vice-versa function ctv_swap_hands,m compile_opt idl2, hidden out = m out[*,0,*] *= -1 return,out end ;helper function ;calculates the norm of a bunch of vectors simultaneously function ctv_norm_vec_rot,v compile_opt idl2, hidden if not keyword_set(v) then return, -1L if size(v,/n_dim) ne 2 then return,-1L return, sqrt(total(v^2,2)) end ;helper function ;normalizes a bunch of vectors simultaneously function ctv_normalize_vec_rot,v compile_opt idl2, hidden if not keyword_set(v) then return, -1L if size(v,/n_dim) ne 2 then return,-1L n_a = ctv_norm_vec_rot(v) if(size(n_a,/n_dim) eq 0 && n_a eq -1L) then return,-1L v_s = size(v,/dimension) ;calculation is pretty straight forward ;we turn n_a into an N x D so computation can be done element by element n_b = rebin(n_a,v_s[0],v_s[1]) return,v/n_b end ;helper function ;vectorized fx to multiply n matrices by n vectors function ctv_mx_vec_rot,m,x compile_opt idl2, hidden ;input checks if(~keyword_set(m)) then return, -1L if(~keyword_set(x)) then return, -1L m_s = size(m,/dimension) x_s = size(x,/dimension) ;make sure number of dimensions in input arrays is correct if(n_elements(m_s) ne 3) then return, -1L if(n_elements(x_s) ne 2) then return, -1L ;make sure dimensions match if(not array_equal(x_s,[m_s[0],m_s[1]])) then return,-1L if(not array_equal(m_s,[x_s[0],x_s[1],x_s[1]])) then return,-1L ;calculation is pretty straight forward ;we turn x into an N x 3 x 3 so computation can be done element by element y_t = rebin(x,x_s[0],x_s[1],x_s[1]) ;custom multiplication requires rebin to stack vector across rows, ;not columns y_t = transpose(y_t, [0, 2, 1]) ;9 multiplications and 3 additions per matrix y = total(y_t*m,3) return, y end pro matrix_array_lib ;does nothing, just puts the functions in scope compile_opt idl2, hidden end