

THEMIS Probe-to-SST Interface Control Document (ICD)

thm_sys_111AC_SST_ICD.doc Version: AC Release: 04 March 2005

U.C. Berkeley THEMIS Mechanical Engineering
Ellen Taylor, U.C.Berkeley THEMIS Mission Systems Engineer
Paul Turin, U.C.Berkeley THEMIS Mechanical Systems Engineer
Kevin Brenneman, Swales Aerospace, THEMIS Spacecraft Systems Engineer
Rob Eppler, U.C.Berkeley THEMIS Spacecraft Mechanical Engineer
Peter Harvey, U.C.Berkeley THEMIS Project Manager

Document Revision Record

Rev.	Date	Description of Change	Approved By
D1	28 AUG 2003	Preliminary Draft	-
D2	13 OCT 2003	Second Draft Revision	-
		Final Release:	
-	31 MAR 2004	Updated per ICD drawings.	
		Updated Thermal Sections.	
		Baseline:	
AA	25 MAY 2004	Updated per Swales comments	
AA	23 MA 1 2004	Appended Mechanical ICD Drawings	
AB	AB 10 OCT 2004 Updated Mechanical ICD Drawing		
		Removed thermal information which has	
AC	11 MAR 2005	been relocated to the THEMIS Instrument	
AC	11 WIAK 2003	Thermal Specification,	
		THM_SYS_119_ITH_ICD	

Drawing Revision Record

Rev.	Date	Description of Change	Approved By
AA	5/25/04	THM-SST-ICD-001 Baseline Release	
AB	10/04/04	THM-SST-ICD-001 Rev AB	
AC	03/11/05	Updated and improved thermal information Signature Page: Updated the Swales Systems Lead	

Distribution List

Name	Email
Peter Harvey, Project Manager, U.C.Berkeley	<pre>prh@ssl.berkeley.edu;</pre>
Paul Turin, Mechanical Lead, U.C.Berkeley	pturin@ssl.berkeley.edu;
Chris Smith, Thermal Lead, UC Berkeley	csmith@ssl.berkeley.edu;
Ellen Taylor, Mission Systems, U.C.Berkeley	ertaylor@ssl.berkeley.edu;
Robert Lee, SST Mech Lead, U.C.Berkeley	rklee@ssl.berkeley.edu;
Davin Larson, SST Lead Scientist, U.C. Berkeley	davin@ssl.berkeley.edu;
Tom Ajluni, Spacecraft Systems, Swales Aerospace	tajluni@swales.com;
Bob Kraeuter, Electrical Systems, Swales Aerospace	<u>rkraeuter@swales.com;</u>
Richard LeBoeuf, ACS Lead, Swales Aerospace	rleboeuf@swales.com;
Rommel Zara, Thermal Lead, Swales Aerospace	rzara@swales.com;
Kevin Brenneman, Spacecraft Systems, Swales Aerospace	kbrenneman@swales.com;
Mike Cully, Probe Project Manager, Swales Aerospace	mcully@swales.com;
Rob Eppler, Mechanical Systems, Swales Aerospace	weppler@swales.com;
Chris Lashley, Mechanical Systems, Swales Aerospace	clashley@swales.com;

Warren Chen, Spacecraft Systems, Swales Aerospace wchen@swales.com

TBD List

Identifier	Description

Table of Contents	
Document Revision Record	
Drawing Revision Record	2
Distribution List	2
TBD List	3
1. Introduction	6
1.1 Scope	6
1.2 Component Description	6
1.3 Document Conventions	6
1.4 Applicable Documents	6
1.5 Units	7
2. Mechanical Interface	7
2.1 Interface Drawing	7
2.1.1 Instrument Envelopes	
2.1.1.1 Instrument Stowed Envelope	
2.1.1.2 Instrument Deployed Envelope	
2.2 Coordinate Systems	
2.3 Field of View	
2.3.1 Field of View	
2.3.2 Field of Travel	
2.4 Mass Properties	
2.5 Mounting	
2.5.1 Mounting Method	
2.5.2 Mounting Interface	
2.5.3 Mounting Hardware	
2.5.4 Mounting Surface Requirements	
2.5.4.1 Flatness	
2.5.4.2 Surface Finish	
2.5.5 Mounting Location.	
2.5.6 Drill Templates	
2.5.7 Spacecraft Mounting	
2.5.7.1 Orientation During Integration	
2.5.7.2 Mounting Impacts	
2.6 Alignment.	
2.6.1 Alignment Responsibilities	
2.6.2 Alignment Requirements	
2.7 Mechanisms	
2.8 Access To Instrument	
2.8.1 General Access	
2.8.2 Specific Access	
2.8.3 Mechanical Test Instrumentation Access	
3. Thermal Interface	
3.1 Thermal Design	
3.2 Thermal Design & Analysis Responsibilities	11

3.3	Heat Transfer	11
3.4	Power Dissipation	
3.5	Temperature Requirements	
	Temperature Monitoring and Control	
	Contamination Control.	

Release: 10/04/2004

Appendix A: THEMIS SST Interface Drawing, File THM_SST_ICD_001

1. Introduction

This document shall describe the interface between the THEMIS probe bus and the SSTs. Each THEMIS probe shall carry a total of two SSTs, which are identical to each other. In addition, all attachment interfaces to the probe bus are identical.

1.1 Scope

This Interface Control Document (ICD) will define the flight hardware interface requirements, math model requirements, data/information deliverables, GSE/Developmental unit requirements, and Verification Matrix with Verification requirements. Functional/Performance requirements are found in the requirements database, and Environmental requirements are found in the Verification Plan and Environmental Specification.

1.2 Component Description

The SST measures the angular distribution of the super-thermal ions and electrons. The sensor is similar in design the units built and flown on the WIND spacecraft and the electronics are implemented using an ESTEC-provided Mixed Analog/Digital Application Specific Integrated Circuit, which has been developed for the GSTP program.

1.3 Document Conventions

In this document, TBD (To Be Determined) means that no data currently exists. A value followed by TBR (To Be Resolved) means that this value is preliminary. In either case, the value is typically followed by UCB (University of California at Berkeley) and / or SA (Swales Aerospace) indicating the party responsible for providing the data and a unique reference number.

1.4 Applicable Documents

The following documents include drawings and THEMIS project policies, which are part of the Interface Requirements. In the event of a conflict between this ICD and the following documents, this ICD takes precedence. All ICD documents and drawings can be found on the Berkeley THEMIS FTP site:

ftp://apollo.ssl.berkeley.edu/pub/THEMIS/

- 1. THEMIS SST Interface Drawing, File THM SST ICD 001
- 2. THEMIS Instrument Thermal Specification, THM_SYS_119_ITH_ICD

The following documents are government documents, provided as references for the Interface Requirements.

1. EWR-127-1: Eastern and Western Range Safety Requirements

- 2. MIL-HDBK-340A: Application Guidelines for MIL-STD-1540; Test Requirements for Launch, Upper Stage, and Space Vehicles
- 3. MIL-STD-1522A: Standard General Requirements for Safe Design and Operation of Pressurized Missile and Space Systems
- 4. MIL-STD-1540D: Product Verification Requirements for Launch, Upper-stage, and Space Vehicles
- 5. NPG 6000.1E: Requirements for Packaging, Handling and Transportation for Aeronautical and Space Systems, Equipment, and Associated Components, dated April 26, 1999

1.5 Units

The drawings contained in this document are dual dimensioned in inches and millimeters

2. Mechanical Interface

2.1 Interface Drawing

The mechanical configuration of the SST is shown in the SST Interface Drawing THM-SST-ICD-001. These include a dimensioned drawing detailing the overall envelope, mounting fastener pattern, electrical connector locations, center-of-gravity (C.G.) location, instrument coordinate system, thermal control surface finishes, and thermal interface requirements.

2.1.1 Instrument Envelopes

The envelope specified is the static envelope, inclusive of all instrument hardware and blankets. The actual flight instrument as delivered to Swales is to be within this envelope. Dynamic deflections of the instrument in Launch Mode will be accounted for by Swales as long as the instrument minimum frequency requirement is met. The SST instrument and overall envelope geometry and dimensions are as shown in Addendum A of this document.

2.1.1.1 Instrument Stowed Envelope

The Instrument Interface Drawing, THM-SST-ICD-001 is the controlling reference that specifies the Launch mode mechanical interface.

Release: 10/04/2004

2.1.1.2 Instrument Deployed Envelope

The SST instrument is stationary and does not deploy.

2.2 Coordinate Systems

The instrument coordinate system relative to the instrument interface is shown in THM-SST-ICD-001. All instrument information is defined relative to this instrument coordinate system.

2.3 Field of View

2.3.1 Field of View

The Instrument Interface Drawing THM-SST-ICD-001 is the controlling reference that specifies the On-Orbit mode Fields of View.

2.3.2 Field of Travel

The SST instrument is static and does not move.

2.4 Mass Properties

The mass of the SST shall be measured prior to delivery to within ±0.01kg. The Center-of-Gravity (C.G.), as documented in THM-SST_ICD_001 and referenced to the instrument coordinate axes described above, shall be predicted through analysis. The Moments of Inertia (MOIs) of the SST, as documented in THM-SST_ICD_001 and referenced to the instrument coordinate axes described above, shall be predicted through analysis.

2.5 Mounting

2.5.1 Mounting Method

The SST shall be mounted to the probe bus via a bolted connection as shown in THM-SST-ICD-001. Built in flexures in the mounting feet provide semi-kinematic mounting to accommodate differential expansion across the interface.

2.5.2 Mounting Interface

Mounting hole coordinates, dimensions, orientation, and tolerances are shown in THM-SST-ICD-001. Mounting hole tolerances shall be dimensioned in accordance with ANSI Standard Y14.5M, "Dimensioning and Tolerancing", 1999 or later revisions.

2.5.3 Mounting Hardware

All mounting fastener hardware shall be provided by Swales. Swales shall provide all shims as required to meet alignment requirements.

2.5.4 Mounting Surface Requirements

2.5.4.1 Flatness

The mounting surface of the instrument shall be fabricated to a flatness tolerance of 0.005 inches or less to ensure the required electrical and thermal contacts as well as the required alignment accuracy. The Probe Bus mounting surface shall be flat to the tolerance 0.005 inches or less. Instrument mounting surface characteristics shall be documented in the SST interface drawing, THM-SST-ICD-001. Swales shall shim as required to avoid inducing stress.

2.5.4.2 Surface Finish

The mounting surface of the instrument shall be fabricated to a surface finish of 32 micro-inches RMS or less to ensure the required electrical and thermal contacts as well as the required alignment accuracy.

2.5.5 Mounting Location

The instrument origins are located at the Probe Bus coordinates shown on THM-SST-ICD-001.

2.5.6 Drill Templates

No drill templates will be required. All SST interfaces will match if all conditions of this specification are maintained.

2.5.7 Spacecraft Mounting

2.5.7.1 Orientation During Integration

Instruments shall be capable of being installed/removed with the Probe Bus X/Y axes horizontal.

2.5.7.2 Mounting Impacts

The instrument components shall be capable of being installed or removed during ground operations without degradation, damage or disqualification of the flight hardware.

2.6 Alignment.

2.6.1 Alignment Responsibilities

Swales is responsible for aligning the instrument to the bus.

2.6.2 Alignment Requirements

The SSTs shall be placed relative to the bus coordinate system within mounting tolerances

2.7 Mechanisms

The SST only has internal moving parts, which will not alter the interface to the probe bus.

2.8 Access To Instrument

2.8.1 General Access

All items to be installed, removed, or replaced at the Probe Bus/Carrier level shall be accessible without disassembly of the item.

2.8.2 Specific Access

The following table provides a list of test connectors, contamination covers, and any other I&T equipment that must be installed or removed during integration, environmental test or at the launch site.

Table 2.8.2: Access Requirements

Item	Last Access	Function
SST Contamination	Launch Site: Probe	Provides contamination protection
Covers	Carrier Assembly	Provides contamination protection
CCT Durgo	Launch Site: Probe	Provides contamination protection
SST Purge	Carrier Assembly	Provides contamination protection

<u>Test Items:</u> All items to be removed prior to test shall be tagged with a red tag stating, "REMOVE BEFORE TEST". All items to be installed prior to test shall be tagged with a green tag.

<u>Flight Items:</u> All items to be removed prior to flight shall be tagged with a red tag stating, "REMOVE BEFORE FLIGHT". All items to be installed prior to flight shall be tagged with a green tag.

2.8.3 Mechanical Test Instrumentation Access

The instrument shall accommodate mounting area and access to temporarily installed acceleration sensors and supporting hardware for purposes of monitoring accelerations during Instrument, Probe Bus, and Probe Carrier Assembly ground test.

Release: 10/04/2004

3. Thermal Interface

Thermal interface information has been transferred to Ref 11 THEMIS Instrument Thermal Specification, THM_SYS_119_ITH_ICD

3.1 Thermal Design

This section has been moved to Reference 11.

3.2 Thermal Design & Analysis Responsibilities

This section has been moved to Reference 11.

3.3 Heat Transfer

This section has been moved to Reference 11.

3.4 Power Dissipation

The nominal and maximum power dissipation is provided in THM_SYS_009. Power levels used in thermal modeling are given in Reference 11

Release: 10/04/2004

3.5 Temperature Requirements

This section has been moved to Reference 11.

3.6 Temperature Monitoring and Control

This section has been moved to Reference 11.

3.7 Contamination Control

This section has been moved to Reference 11.