

THEMIS Failure Modes Effects and Criticality Analysis (FMECA)

THM-SYS-007b May 26, 2004

Ellen Taylor, U.C.Berkeley THEMIS Mission Systems Engineer

Kevin Brenneman, Swales Aerospace, THEMIS Spacecraft Systems Engineer

Peter Harvey, U.C.Berkeley THEMIS Project Manager

Document Revision Record

Rev.	Date	Description of Change	Approved By
-	10/30/03	Released Draft (Preliminary FMECA)	-
А	5/14/04	Updated Information (Final FMECA)	ERT
В	5/26/04	Added Reliability Block Diagram as Appendix D	ERT

Distribution List

Name	Email
Vassilis Angelopoulos, PI, U.C. Berkeley	vassilis@ssl.berkeley.edu;
Peter Harvey, Project Manager, U.C.Berkeley	prh@ssl.berkeley.edu;
Paul Turin, Mechanical Systems Engineer, U.C. Berkeley	pturin@ssl.berkeley.edu;
Ellen Taylor, Mission Systems, U.C. Berkeley	ertaylor@ssl.berkeley.edu;
Tom Ajluni, System Engineer, Swales Aerospace	tajluni@swales.com;
Kevin Brenneman, Probe Systems, Swales Aerospace	kbrenneman@swales.com;
Mike Cully, Probe Project Manager, Swales Aerospace	mcully@swales.com;
Adrian Rad, Probe Reliability Engineer, Swales Aerospace	arad@swales.com

TBD List

Identifier	Description

Table of Contents

D	ocument l	Revision Record	2
		1 List	2
	BD List		2
1.	OVER	RVIEW	4
	1.1 S	SCOPE	4
	1.2 F	PURPOSE	4
	1.3 C	DBJECTIVES	5
	1.4 L	DEFINITIONS	5
2.	FME (CA METHODOLOGIES AND APPLICATION	6
	2.1 A	ASSUMPTIONS	6
	2.2 V	VORKSHEET DEFINITIONS	
3.	FME(CA RESULTS	8
	3.1 I.	DENTIFICATION OF PROBLEM AREAS	9
	3.1.1	Level 5 Failures	9
	3.1.2	Level 4 Failures	9
	3.1.3	Level 3 Failures	9
	3.1.4	Level 2 Failures	9
	3.1.5	Level 1 Failures	9
	<i>3.2 C</i>	CRITICAL ITEMS LIST	10
	3.3 F	FAILURE PREVENTION AND MITIGATION TECHNIQUES	10
	3.3.1	Circuit Selection	10
	3.3.2	Analysis Techniques	
	3.3.3	Test Techniques	

APPENDIX A: Instrument Suite block diagrams APPENDIX B: Instrument Suite FMEA Worksheet APPENDIX C: Probe Bus FMEA APPENDIX D: Probe Bus Reliability Block Diagram

1. OVERVIEW

THEMIS is a NASA Explorer mission which will launch a constellation of five micro-satellites (probes) in mid-2006. Flying in synchronous orbits within the earth's magnetosphere, the probes will measure the particle processes responsible for eruptions of the aurora. As the prime contractor for THEMIS, the University of California at Berkeley will provide the project management, systems engineering, flight instrumentation, ground-based imagers, mission operations, and performance assurance. Swales Aerospace will provide probe buses, probe bus carrier and integration and test. Key international partners include instrument teams from Canada, France, Germany, and Austria.

There are two principle components to the THEMIS mission that must be considered when completing the Mission-Level Failure Mode Effects and Criticality Analysis (FMECA) and assessing the possible single point failure modes of the mission:

- (1) Constellation redundancy and the use of an on-orbit spare. P3 or P4 probes can replace any other probe during the first year of the mission, resulting in a 4- probe configuration that can accomplish the minimum performance science within 1 year, and near baseline science goals of the mission within 2 years; and
- (2) Science resilience. Minimum science can still be accomplished with partial or total sensor failure on one or more of the probes.

Therefore, the flight system itself is predominantly single-string designs with some areas of functional redundancy. Nonetheless, this FMECA is performed both at the system and subsystem interface level to determine the basis for system robustness to potential failure modes, the data points required to detect them, and the steps that should be taken to mitigate them. Mitigation can be additional test points, redundant data paths, filtering of auxiliary telemetry data, formation of backup procedures, and additional ground software and procedures to provide failure detection and response.

1.1 SCOPE

The Mission-Level FMECA is performed early in the detailed design process to ensure appropriate redundancy in the system design and sufficient reliability of critical parts and assemblies. As the design matures, more detailed Subsystem FMECAs are completed to further identify the possible failure modes and to assess the reliability of each subsystem. These FMECAs, part the acceptance data package for each probe subsystem, are considered separate deliverables and are not contained within the scope of this document. Nevertheless, all subsystem FMECAs are evaluated as they pertain to the assumptions described here-in.

1.2 PURPOSE

The explicit purpose of this FMECA is to identify critical items in the system by assessing the impact of failure at each interface. This document also identifies a failure remedy (recommended action or response plan) to reduce the probability and/or effect of the failure. Ultimately, the FMECA will be used to create a viable test and analysis plan that focuses resources to increase reliability.

1.3 OBJECTIVES

The main objectives of the Mission-Level FMECA are to:

- Verify that redundant paths are isolated or protected such that any single failure that causes the loss of a functional path shall not affect the other functional path or the capability to switch operation to that redundant path;
- Verify that the THEMIS system has no single or redundant interface failure mode, which could affect safety of personnel, or cause catastrophic failure of the launch vehicle;
- Verify that any single point failures have sufficient reliability so as to not compromise the probability of mission success;
- Identify existing methods of failure detection and any possible need for new methods; and
- Identify any failure modes, which may be time critical for corrective action.

1.4 DEFINITIONS

- Subsystem: A combination of self-contained components.
- Component: An entire electronics chassis a combination of parts, devices, and structures, which perform a distinct function in the operation of the overall equipment.
- Assembly: The highest order sub-division of a component. It may be a combination of circuit board module (box) or a sensor module.
- Module: An individual circuit board or distinct functional element.
- Circuit Element: A subset of an Assembly, the circuit element is a single electrical circuit, which performs a very specific function, with specified inputs and outputs. A circuit element can be analyzed stand-alone for failure modes and can be subjected to stand-alone Worst Case Analysis or Test.
- Failure: The inability of a system, subsystem, component, or assembly to perform its required function within specified limits, under specified conditions, for a specified duration.
- Failure Mode: A description of the manner in which a failure may occur.
- Corrective Action: Actions, which could be taken to circumvent the failure of an item.
- Failure Cause: Any creditable event that can generate a failure of an item or items.
- Redundancy: Multiple ways of performing a function.
- Operational Redundancy: Redundant items, all of which are fully energized during the subsystem operating cycle. Operations redundancy includes load-sharing redundancy, where redundant items are connected in such a manner that upon failure of one unit, the remaining items will continue to perform the system function.
- Standby Redundancy: Redundant hardware items that is non-operative (have no power applied) until they are switched to the subsystem upon failure of the primary item.
- Like Redundancy: Identical hardware items performing the same function.
- Unlike Redundancy: Non-identical hardware items performing the same function.

• Single Point Failure: The failure of an item which would result in permanent failure of a subsystem (i.e. degraded capability or loss of THEMIS mission), and which is not compensated for by redundancy or alternative operation procedure.

2. FMECA METHODOLOGIES AND APPLICATION

THEMIS failure analysis is conducted for all interfaces down to the subsystem level using block diagrams traceable to FMECA worksheets. Appendix A contains the Instrument Suite block diagrams. Appendix B contains the completed worksheets for the Instrument Suite. Appendix C contains the Probe Subsystem FMECA outline and reliability calculations. As mentioned above, detailed subsystem FMECAs are completed for each Probe Subsystem, but not considered within the scope of this document.

The analysis is performed by first assuming specific failure modes at a given interface or subsystem block. The effect of the failure on the subsystem function is recorded on the worksheet. Further analysis is completed to identify what circuit elements could cause the failure and what corrective actions should be taken to eliminate the failure mode. Items are identified for those circuit elements deemed mission critical. The THEMIS critical items list is provided in Section 3.2 of this document.

For the Instrument Suite FMECA, the analysis is performed for the following functional interfaces evaluated for each Instrument (ESA, SST, FGM, SCM and EFI):

- 1. Power Interfaces
- 2. Data Interfaces

For the Probe Bus Suite FMECA, the analysis is performed for the following subsystem functional blocks:

- 1. Electrical Power Subsystem
- 2. Attitude Control Subsystem
- 3. Reaction Control Subsystem
- 4. Communication Subsystem
- 3. C&DH/Processor Subsystem
- 4. Backplane
- 5. Harness/Grounding
- 6. Separation Subsystem

2.1 ASSUMPTIONS

This FMECA was performed under the following assumptions:

- It is assumed that only one failure mode has occurred at any given time, thus establishing the critically category for the failure modes.
- It is assumed that identical boards in different probes do not have a common design flaw that would cause something other than an uncorrelated or random failure.
- Failures that may occur during ground operations are not addressed.
- The power distribution interface failures considered were (1) loss of power; (2) incorrect supply voltage (specifically under-voltage); or (3) over-current
- The data interface failures considered were (1) loss of sensor signal; (2) intermittent data from the sensor; or (3) corrupted sensor data

- The mechanism failures were considered in the context of electrical failure to initiate activation. Mechanical failures (analysis to show actuation torques and forces are at least 3 times the combined worst case resistance torques or forces predicted) have been assessed for each mechanism, but are not considered within the scope of this FMECA.
- Various failure modes specific to each Probe Subsystem were considered

2.2 WORKSHEET DEFINITIONS

For the Instrument Suite, separate FMECA worksheets were developed for each functional interface (power and data). Worksheets are provided in Appendix B. The worksheet format and quantification scales were adapted from the *JPL FMEA Worksheet* originated by A. Dembski. In conjunction with the block diagrams, the worksheet explicitly identifies potential failure modes for each interface and provides an assessment of the failure's impact on overall system reliability. Potential failures are analyzed for their likelihood and detect-ability to establish a Failure Priority Number (FPN). The highest FPN value items require the most attention. The worksheet also provides direct trace-ability for each item by capturing action plans and current status of the high FPN items.

COLUMN HEADER	DEFINITION
FMECA Item Code	Unique number assigned to the functional interface under analysis.
Interface	Concise statement of the functional interface.
Potential Failure Modes	Concise statement of each failure mode possible at the designated interface.
Potential Failure Effects	Effects of the failure mode on module, component, subsystem, system, or LV.
Severity (Sev)	On a scale of 1-10, the severity of each failure (10=most severe). See severity table below.
Potential Cause	Concise statement of the potential cause(s) of the interface failure.
Probability (Prob)	On a scale of 1-10, the probability of the failure occurring. See probability table below.
Current Design Controls	Examination of the current design as applied to the failure mode. Specifically includes: the detection method for each failure mode; action, automatic or manual, that may be taken in the event of the failure; description of alternate means of operation; and/or redundancy available after a failure. Current design controls are considered heavily when considering the recommended action.
Detect-ability (Det)	On a scale of 1-10, the ability to detect if the failure occurred. See detect-ability table below.
Risk Priority Number	The combined weighting of severity, likelihood, and detect-ability. FPN=(Sev x Prob x Det)/3.
Recommended Action	Concise statement of response plan as required.
Responsibility and Target	Identification of person responsible to implement response plan by a
Completion Date	specific milestone.
Action Taken	Concise statement of action that was taken.
New Sev, Prob, Det, FPN	Re-evaluation of failure mode.

Worksheet attributes are provided in the table below:

Definitions probability of occurrence and ability to detect are provided in the tables below.

DETECT- ABILITY	Likelihood of detection by Design Control	Ranking	PROBALITY	Ranking
Absolute Uncertainty	Design control cannot detect potential cause and subsequent failure mode	10	Very High: Failure is almost inevitable	10
Very Remote	Very remote chance the design control will detect potential cause and subsequent failure mode	9	High-Very High	9
Remote	Remote chance the design control will detect potential cause and subsequent failure mode	8	High: Repeated failures	8
Very Low	Very low chance the design control will detect potential cause and subsequent failure mode	7	Moderate-High	7
Low	Low chance the design control will detect potential cause and subsequent failure mode	6	Moderate: Occasional failures	6
Moderate	Moderate chance the design control will detect potential cause and subsequent failure mode	5	Moderate-Low	5
Moderately High	Moderately High chance the design control will detect potential cause and subsequent failure mode	4	Low-Moderate	4
High	High chance the design control will detect potential cause and subsequent failure mode	3	Low: Relatively few failures	3
Very High	Very high chance the design control will detect potential cause and subsequent failure mode	2	Remote-Low	2
Almost Certain	Design control will detect potential cause and subsequent failure mode	1	Remote: Failure is unlikely	1

3. FMECA RESULTS

For the Instrument Suite, a Failure Priority Number (FPN) was assigned to each interface. The FPN was then used identify the Failure Severity. For the Probe Bus, reliability calculations were completed for each subsystem as provided in the Appendix C spreadsheet. The Failure Severity was assessed individually for each possible failure mechanism within a probe subsystem. Although the method of identifying the severity of failures was different for the Instrument and Probe Systems, the consequences were evaluated collectively to provide a comprehensive assessment of the full system. The Failure Severity (consequence) categories are provided below:

- Level 5: Death/Injury or One or More Personnel; Loss/Damage to Launch Vehicle
- Level 4: Complete Loss of More than One Probe (loss of minimum mission)

- Level 3: Major Compromise of Probe Mission Usefulness (Retention of minimum mission but major degradation of mission performance)
- Level 2: Some Compromise of Probe Mission Usefulness (Minor loss of some mission performance)
- Level 1: No effect upon Probe Mission Usefulness

Because of the inherent constellation redundancy on THEMIS, it is assumed that a loss of the THEMIS Mission requires the loss of more than one Probe. Degradation consists the loss of one Probe or degraded performance in more than one Probe.

3.1 IDENTIFICATION OF PROBLEM AREAS

3.1.1 Level 5 Failures

No Level 5 failure modes were identified for the THEMIS System. Three subsystems were identified that could potentially cause death or injury and/or have a catastrophic effect on the launch vehicle:

- 1. Separation system inadvertent separation of a probe or probes during ascent.
- 2. Boom Deploy inadvertent release of the Magnetometer Booms or the Axial EFI Booms.
- 3. RCS Subsystem failure of Pressurant system valve

However, as dictated by safety, all systems require three separate inhibitors. Therefore, no single failure of any of these inhibitors could have a catastrophic effect. Those interfaces with a FPN above 180 or Hazardous were considered Level 1: Catastrophic (RED).

3.1.2 Level 4 Failures

Level 4 failures included loss of one Probe, or significant (de-habilitating) problems. They also have a fairly high probability of occurrence and/or minimal ability to detect the failure. These failures include loss of core THEMIS functions on one Probe (power distribution, data collection, etc.) Those interfaces with a FPN of 40-200 are considered Level 2: Critical (YELLOW).

3.1.3 Level 3 Failures

Level 3 failures included significant degradation of the THEMIS Mission. They also have some probability of occurrence and/or uncertain ability to detect the failure. These failures included timing, experiment quality and thermal considerations. Those interfaces with a FPN of 20-40 were considered Level 3: Significant (YELLOW).

3.1.4 Level 2 Failures

Level 2 failures included minor degradation of the THEMIS Mission. They also have a low probability of occurrence and/or ability to detect the failure. These failures included slightly compromised data. Those interfaces with a FPN of 10-20 were considered Level 2: Minor (GREEN).

3.1.5 Level 1 Failures

Level 1 failures have no effect on the THEMIS Mission. Those interfaces with a FPN of 0-10 were considered Level 1: Insignificant (GREEN).

3.2 CRITICAL ITEMS LIST

From the FMECA worksheets, Level 2, 3, and 4 Failures are easily identified. The following subsystem or circuit elements were shown to be a significant aspect of the potential cause or mechanism for Level 3 and 4 failures. Mitigation techniques for these critical items are provided in the subsequent section.

- 1. Separation Subsystem
- 2. Receiver
- 3. Transponder
- 4. Bus Avionics Unit Coldfire Processor Board
- 5. Instrument Data Processor 8085 CPU
- 6. Instrument and Probe Bus FPGAs
- 7. Instrument and Probe Bus FETs

Separate Subsystem FMECAs will be completed for the critical Probe Subsystems (Separation Subsystem, Receiver, Transponder, BAU Processor Board) and will be available prior to the Probe Bus Pre-Environmental Review (PER).

3.3 FAILURE PREVENTION AND MITIGATION TECHNIQUES

3.3.1 Circuit Selection

Circuit elements are studied from the critical items list and, on a case-by-case basis, the best method for adding redundancy or ensuring reliability is recommended (*See Worksheet*). Additional *analyses (See Section 3.3.2)* are identified to ensure that parts are properly derated, lifetime issues are considered, and failure modes are identifiable or have compensating measures. Additional *tests (See Section 3.3.3)* are identified to ensure that circuit elements have adequate design margin, interact properly as a system, and do not have excessive sensitivity. Recommended analyses and tests are described in the following sections.

3.3.2 Analysis Techniques

Four types of analyses/simulations are recommended to ensure reliability: Parts Stress; Worst Case; Thermal; and Timing/Frequency simulations. The purpose and methodology is described below.

3.3.2.1 Parts Stress Analysis (PSA)

PSA examines all of the components in a circuit to ensure parts operate within their prescribed guidelines under all input conditions (change in Power Supply voltage, change in temperature, change in load, etc.). Standard derating criteria has been established for THEMIS parts per the Performance Assurance and Implementation Plan (PAIP). However, PSA provides additional insight into details that could cause premature circuit failure, ensuring that there are no fundamental design flaws that would affect the lifetime of components within a circuit. PSA does not analyze the performance of the circuit. It simply looks to see if any part of the circuit under a stress situation would cause premature failure.

3.3.2.2 Worst-Case Analysis (WCA)

WCA looks at lifetime and performance issues and is appropriate for circuits whose performance degradation cannot be reasonably compensated for. WCA is secondary to PSA. PSA must be performed first. In deciding which circuits required WCA, their function was considered within the context of the whole Subsystem as well as their failure consequences within the context of the FMECA.

3.3.2.3 Thermal Analysis

Performed at the board level, thermal analysis uses: expected parts placement on a circuit board; power consumption; conductivity between part leads and part junction; conductivity of circuit board and housing; and reference plate temperature to derive predicted junction temperatures and at the extreme operational conditions for all components. The PSA and thermal analysis must be consistent in that the PSA's assumed temperatures must agree with those worst-case operational junction temperatures predicted by the model.

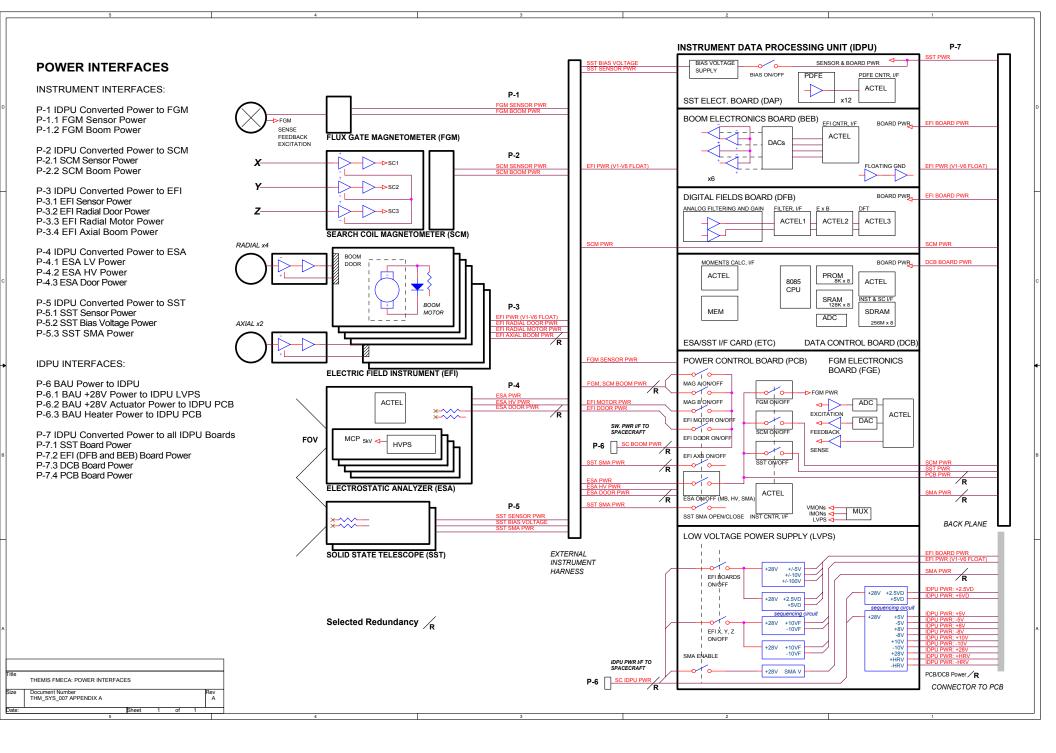
3.3.2.4 Timing and Frequency Simulations

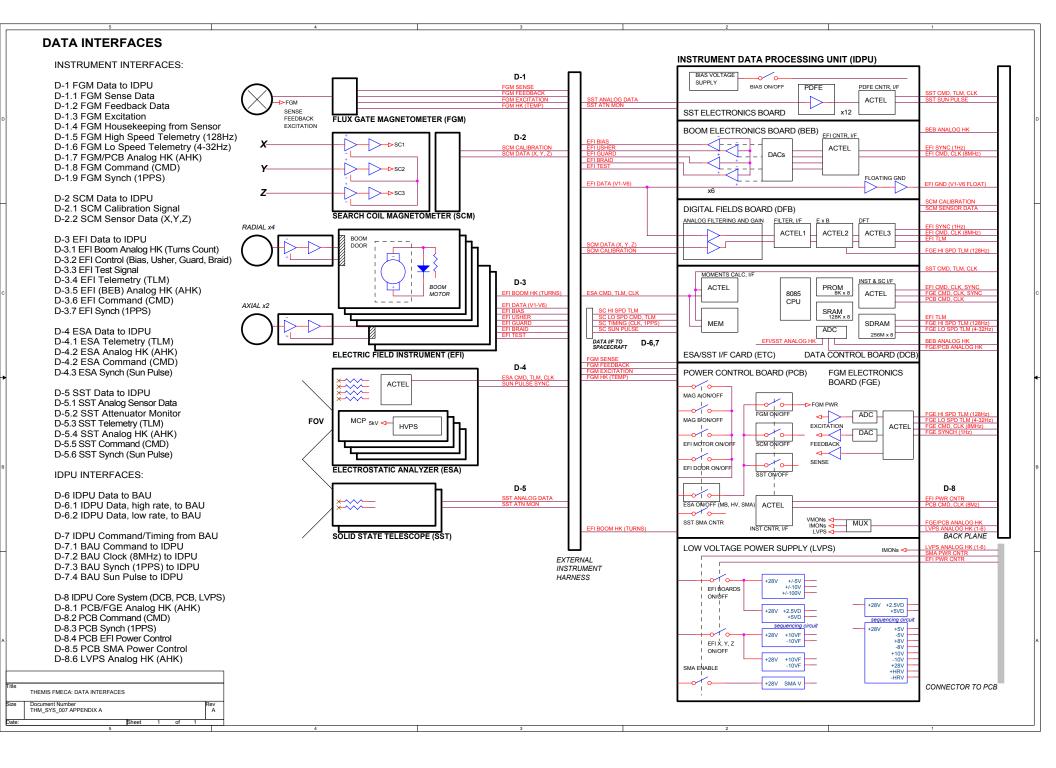
Timing and Frequency simulations are capable of simulating FPGA performance under given set of test vectors to ensure adequate timing margin, etc. exists in the design. These tests are particularly important in the case of the Actel FPGA's because non-flight units used for testing may have a slight speed advantage over flight chips. That is, timing margin could be adequate for the prototypes and marginal or inadequate for the flight units.

3.3.3 Test Techniques

Recommended tests ensure necessary design margin against external parameters such as operational voltage, temperature, etc. or against frequency of operation (timing margin) and input noise. Two such tests performed at either the circuit or circuit board (subsystem) level are Voltage/Temperature Margin and Frequency.

3.3.3.1 Voltage Margin Testing


Voltage Margin Testing requires varying the operational voltage (provided by an external supply) and the operational temperature to values outside those specified. By evaluating the performance of a circuit under these conditions, information similar to that attained with WCA can be obtained. This test is particularly useful for complex circuits that interact in ways that are difficult to simulate analytically. It is also useful for digital circuits such as FPGA's which don't lend themselves easily to WCA and is a useful augmentation to the time/frequency margin analysis and test. Voltage Margin Testing is recommended for a number of circuits as the most appropriate way to test the robustness of the design and to attain insight on long-term performance.


3.3.3.2 Frequency Margin Testing

Although it is useful to perform analytical simulations with predetermined test vectors and variable clock rates to assess the timing performance of an individual FPGA, it is important for circuits whose timing must interact in complex ways with external inputs to assess the ability of the circuit as a whole to perform with variable clock rates, skews, and asymmetries. Recommend a test whereby the clock signals are run from an external

function generator and rise time, frequency, and symmetry are adjusted over approximately a 10% range. (This can be accomplished by having the crystal oscillator connected to the rest of the system via a jumper wire.) This test, much like the Voltage Margin test, establishes that the design has adequate margin against both external and internal signal degradation due to aging effects.

System
Function
Componen

THEMIS Power

Failure Mode Effects and Criticality Analysis (Design FMECA)

System THEMIS Function Power			Failure Mode Effects and Criticality Analysis (Design FMECA)						Prepared By Ellen R. Ta				avlor			
Function Component		All		(Design FMECA)				FMEA Date	10/30/2003				_			
Design	Lead	Peter Berg								Revision Date		5/4/2004			_	
ID	Interface	Potential Failure Mode(s)	Potential Effect(s) of Failure	Severity	Potential Cause(s)/ Mechanism(s) of Failure	Probability	Current Design Controls	Detectability	R P N	Recommended Action(s)	Page Responsibility & Target Completion Date	1 Action Actions Taken	Sev		New Det	
INSTR	RUMENT INTERFA	ACES										l	Ž	2 2	<u>i ž</u>	
	FGM Sensor		No FGM data.	High	Connector, Harness,	Remote: Failure is	High Rel FETs,	Very High	14	N/A			—	_	_	
	Power	2. Under-Voltage	Degraded science mission		Backplane, FET, FPGA control	unlikely	QA Harness			- ,						
P-1.2	FGM Boom Power	1. No Voltage 2. Under-Voltage		High	Connector, Harness, Backplane, FET,	Low-Moderate	High Rel FETs, QA Harness,	Very High	56	Add Redundancy for Mag Booms	October 2003, before design is	Added Redundant FET	HiglR	en Ve	er, 14	
			close proximity to probe. Degraded		Mechanism, Frangi- bolt actuator		Mechanism Testing				final	to PCB, Redundant				
P-2 II	PU Converted Po		science mission									Wires		_		
P-2.1	SCM Sensor Power	1. No Voltage 2. Under-Voltage	No SCM data. Degraded science mission - SCM not critical for minimum mission.	Moderate	Connector, Harness, Backplane, FET, FPGA control	Remote: Failure is unlikely	High Rel FETs, QA Harness	Very High	12	N/A						
?-2.2	SCM Boom Power	1. No Voltage 2. Under-Voltage	Boom doesn't deploy. SCM unusable due to	High	Connector, Harness, Backplane, FET,	Low-Moderate	High Rel FETs, QA Harness,	Very High	56	Add Redundancy for Mag Booms	October 2003, before design is	Added Redundant FET	HiglR	len Ve	'er; 14	
	DPU Converted Po		damage from thruster plume. Degraded science mission		Mechanism, Frangi- bolt actuator		Mechanism Testing				final	to PCB, Redundant Wires				
P-3.1	EFI Sensor Power	1. No Voltage 2. Under-Voltage	No EFI data from one sensors. 6 sensors	Moderate	Connector, Harness, Backplane, FET,	Remote-Low	High Rel FETs, QA Harness	Almost Certain	12	N/A			П	Т	Т	
			provide some redundancy. Degraded science mission		FPGA control											
2-3.2	EFI Radial Door Power	1. No Voltage 2. Under-Voltage	Cannot deploy one wire boom. No EFI	Moderate	Connector, Harness, Backplane, FET,	Low-Moderate	High Rel FETs, QA Harness,	Almost Certain	24	Add Redundancy in Door Mechanism	before design is	Added Redundant SMA	Higl R	en Ve	'er; 14	
			data from sensors. 4 sensors provide some redundancy. Degraded science		Mechanism, SMA actuator		Mechanism Testing				final	Wire				
P-3.3	EFI Radial Motor	1. No Voltage	mission. Stability OK with one failed SPB. Cannot fully deploy	Moderate	Connector, Harness,	Remote-Low	High Rel FETs,	Almost Certain	12	N/A						
	Power	2. Under-Voltage	one wire boom. No EFI data from sensors. 4 sensors		Backplane, FET, Motors		QA Harness									
			provide some redundancy. Degraded science mission. Stability OK with one failed SPB.													
2-3.4	EFI Axial Boom Power	1. No Voltage 2. Under-Voltage	Cannot fully deploy axial boom. No EFI data from sensor. Degraded science	Moderate	Connector, Harness, Backplane, FET, Mechanism, Frangi- bolt actuator	Low-Moderate	High Rel FETs, QA Harness, Mechanism Testing	Almost Certain	24	Add Redundancy for Axial Booms	October 2003, before design is final	Added Redundant FET to PCB, Redundant	Higl R	en Al	lm 7	
			mission. Axial Boom Sensor not critical to minimum science. Stability OK with one failed AXB.									Wires				
9-4 II	PU Converted Po	wer to ESA														
2-4.1	ESA LV Power	1. No Voltage 2. Under-Voltage	No ESA data. Degraded science mission - ESA not critical for minimum	Moderate	Connector, Harness, Backplane, FET	Remote-Low	High Rel FETs, QA Harness	Almost Certain	12	N/A						
2-4.2	ESA HV Power	1. No Voltage 2. Under-Voltage	science. Poor quality ESA data. Degraded	Moderate	Connector, Harness, Backplane, FET	Remote-Low	High Rel FETs, QA Harness	Almost Certain	12	N/A			$ \uparrow $	╈	+	
<mark>2-4.3</mark>	ESA Door Power	1. No Voltage	science mission No ESA data if Door	Moderate	Connector, Harness,	Low-Moderate	High Rel FETs,	Almost Certain	24	Add Redundancy	October 2003,	Added	Higl R	ten V	'er <mark>, 14</mark>	
		2. Under-Voltage	doesn't open. Degraded science mission.		Backplane, FET, Mechanism, SMA actuator		QA Harness, Mechanism Testing			for EFI Door	before design is final	Redundant FET to PCB, Redundant Wires				
-5 ID -5.1	PU Converted Po SST Sensor Power	1. No Voltage 2. Under-Voltage	No SST data from 1 SST. Degraded	Moderate	Connector, Harness, Backplane, FET	Remote-Low	High Rel FETs, QA Harness	Almost Certain	12	N/A			П	Т	Т	
P-5.2	Power SST Bias Voltage	1. No Voltage	science mission Poor SST data.	Moderate	Connector, Harness,	Remote-Low	High Rel FETs,	Almost Certain	12	N/A			\vdash	+	+	
	Power	2. Under-Voltage	Degraded science mission	Moderate	Backplane, FET	Low-Moderate	QA Harness High Rel FETs,	Almost Certain		Parts Stress			Щ	\perp		
'- 5 .3	SST SMA Power	1. No Voltage 2. Under-Voltage	Attenuated or non- attenuated SST data only. Slightly degraded science mission	Moderate	Connector, Harness, Backplane, FET, Mechanism, SMA actuator	Low-Moderate	High Kei FEIs, QA Harness	Almost Certain	24	Parts Stress Analysis (PSA) on FETs	Aug 2004, before flight build					
	INTERFACES															
2-6.1	BAU 28V to IDPU	1. No Voltage 2. Under-Voltage	No Instrument Power. Severely degraded science mission	Very High	Connector, Harness, BAU FET	Low: Relatively few failures	High Rel FETs, QA Harness	Almost Certain	24	Add Redundancy	October 2003, before final BAU-to- IDPU ICD	Redundant Wires added to Harness	Higl R	en Ve	'er 14	
2-6.2	BAU Actuator 28V to IDPU	1. No Voltage 2. Under-Voltage	No Instrument deployables. Severely degraded science mission	Very High	Connector, Harness, BAU FET	Low: Relatively few failures	High Rel FETs, QA Harness	Almost Certain	24	Add Redundancy	October 2003, before final BAU-to- IDPU ICD	Redundant Wires added to Harness	Higi R	.en Ve	'er; 14	
^{2-6.3}	BAU Heater Power 28V to IDPU	1. No Voltage 2. Under-Voltage	No heater power to instruments, possible problems with electronics due	Low	Connector, Harness, BAU FET	Remote-Low	High Rel FETs, QA Harness	Almost Certain		N/A				Ī		
			to being too cold.													

THEMIS
Power
All
Peter Berg

Failure Mode Effects and Criticality Analysis (Design FMECA)

Syster Functi Comp Design	on	Power All Peter Berg	- - - -											
ID	Interface	Potential Failure Mode(s)	Potential Effect(s) of Failure	Severity	Potential Cause(s)/ Mechanism(s) of Failure	Probability	Current Design Controls	Detectability	R P N	Recommended Action(s)	Page Responsibility & Target Completion Date	Action	of Result New Occ New Occ	New Det
P-7 I	DPU Converted Po	ower to all IDPU Bo	ards											
P-7.1	SST Board Power	1. No Voltage 2. Under-Voltage	No SST Data. Severely degraded science mission	High	Connector, Harness, BAU FET	Low: Relatively few failures	High Rel FETs, QA Harness	Almost Certain	21	Add Redundancy	final	Redundant pwr lines in LVPS connector and on Backplane to PCB added	Higl Rer	ver 14
P-7.2	EFI (DFB and BEB) Board Power	1. No Voltage 2. Under-Voltage	No EFI Data. Severely degraded science mission	High	Connector, Harness, BAU FET	Low: Relatively few failures	High Rel FETs, QA Harness	Almost Certain	21	Add Redundancy	final	Redundant pwr lines in LVPS connector and on Backplane to PCB added	Higl Rer	Ver 14
P-7.3	DCB Board Power	1. No Voltage 2. Under-Voltage	No Instrument Data. Severely degraded science mission	Very High	Connector, Harness, BAU FET	Low: Relatively few failures	High Rel FETs, QA Harness	Almost Certain	24	Add Redundancy	final	Redundant pwr lines in LVPS connector and on Backplane to PCB added		ver 14
P-7.4	PCB Board Power	1. No Voltage 2. Under-Voltage	No Instrument Data. Severely degraded science mission	Very High	Connector, Harness, BAU FET	Low: Relatively few failures	High Rel FETs, QA Harness	Almost Certain	24	Add Redundancy	final	Redundant pwr lines in LVPS connector and on Backplane to PCB added	Higl Rer	nVer, 14

5	System
F	unction
¢	Component
- 0	Design Lead

ID

Interface

Potential Failure Mode(s)

Failure Mode Effects and Criticality Analysis

			(Design FME	CA)			Prepared E FMEA Dat Revision Dat
Potential Effect(s) of Failure	Severity	Potential Cause(s)/ Mechanism(s) of Failure	Probability	Current Design Controls	Detectability	R P N	Recommended Action(s)

	M Data to IDPU														
	FGM Sense Data	1 No Data	No FGM data.	High	Connector,	Remote-Low	High Rel FPGA,	Very High	28	FPGA Worst Case	Aug 2004, before		гт	-	<u>т</u>
	r Gin Schist Data	2. Corrupted Data	Degraded science mission	ingn	Harness, FGE FPGA	Keniote-Low	FPGA Testing, QA Harness	very mgn	20	Analysis (WCA), Timing Analysis, Design Review	flight build				
1.1.2	FGM Feedback	1. No Data	No FGM data.	High	Sensor failure,	Remote-Low	High Rel FPGA,	Very High		FPGA Worst Case	Aug 2004, before				—
	FGM Feedback Data	1. No Data 2. Corrupted Data	No FGM data. Degraded science mission	Hign	Connector, Harness, FGE DAC,	Remote-Low	DAC, FPGA Testing, QA	very Hign	28	Analysis (WCA), Timing Analysis,	flight build				
D-1.3	FGM Excitation	1. No Data	No FGM data.	High	FPGA Sensor failure,	Remote-Low	Harness High Rel FPGA,	Very High	28	Design Review FPGA Worst Case	Aug 2004, before			_	+
		2. Corrupted Data	Degraded science mission	Ű	Connector, Harness, FGE ADC, FPGA		ADC, FPGA Testing, QA Harness			Analysis (WCA), Timing Analysis, Design Review	flight build				
D-1.4	FGM	1. No Data	No FGM	Minor	Thermistor failure,	Remote-Low	QA Harness	Very High	12	N/A					
	Housekeeping from Sensor	2. Corrupted Data	temperature data. Minor impact		Connector, Harness										
D-1.5	FGM High Speed	1. No Data	No Hi Speed	Very Low	FPGA, Backplane,	Remote-Low	High Rel FPGA,	Very High	16	N/A					
	Telemetry (128Hz)	2. Corrupted Data	FGM data. Low impact, redundant with low speed.		SDRAM, 8085		FPGA Testing, 8085 Rad Hard								
D-1.6	FGM Lo Speed	1. No Data	No Lo Speed	Minor	FPGA, Backplane,	Remote-Low	High Rel FPGA,	Very High	12	N/A					-
	Telemetry (4- 32Hz)	2. Corrupted Data	FGM data. Minor impact, redundant with high speed.		SDRAM, 8085		FPGA Testing, 8085 Rad Hard								
	FGM/PCB	1. No Data	HK only. No	None	PCB MUX,	Remote-Low	High Rel ADC,	Very High		N/A					+
	Analog HK (AHK)	2. Corrupted Data	impact.		Backplane, DCB ADC, 8085		MUX, FPGA Testing, 8085 Rad Hard								
D-1.8	FGM Command (CMD)	1. No Command		High	8085, DCB FPGA,	Remote-Low	High Rel FPGA,	Very High	28	FPGA Worst Case Analysis (WCA),	Aug 2004, before flight build				
	(СМБ)	2. Corrupted Command	required to start FGM data. No FGM data. Degraded science mission		Backplane, FGE FPGA		FPGA Testing			Analysis (WCA), Timing Analysis, Design Review	liight build				
	FGM Synch (1PPS)	1. No Synch 2. Intermittent Synch	No FGM data. Degraded science mission	High	DCB FPGA, Backplane, FGE FPGA	Remote-Low	High Rel FPGA, FPGA Testing, Internal Synch	Very High	28	Add internal synch	April 2004, before FPGA design is final	Added internal synch pulse in FGE FPGA	Higl I	Ren Ve	er: 14
D-2 SCI	M Data to IDPU														-
D-2.1	SCM Calibration	1. No Data	Calibration	Minor	8085, Backplane,	Remote-Low	QA Harness	Very High	12	N/A					Τ
	Signal	2. Corrupted Data	increases quality of data. Minor impact.		Connector, Harness, Pre-Amp failure										
	SCM Sensor Data (X,Y,Z)	1. No Data 2. Corrupted Data	No SCM data. Degraded science mission, not critical instrument for minimum mission.	Moderate	Sensor failure, Connector, Harness, DFB Actels, Backplane, SDRAM, 8085	Remote-Low	High Rel FPGA, FPGA Testing, QA Harness	Very High	24	FPGA Worst Case Analysis (WCA), Timing Analysis, Design Review	Aug 2004, before flight build				
	I Data to IDPU														
	EFI Boom Analog HK (Turns Count)	1. No Data 2. Corrupted Data	Boom length can be determined without turns count. Minor impact.	Very Minor	Boom unit, Connector, Harness, PCB FPGA, PCB Mux, Backplane, DCB ADC, 8085	Remote-Low	High Rel Parts, Testing, QA Harness	Almost Certain		N/A					
0-3.2	EFI Control	1. No Control	Cannot optimize	Low	8085, DCB FPGA,	Remote-Low	High Rel Parts,	Almost Certain		N/A					—
	(Bias, Usher, Guard, Braid)	2. Corrupted Control	for data quality. Low impact.	LUW	Backplane, BEB FPGA, BEB DACs, Connector, Harness	Kelliote-Low	Testing, QA Harness	Annost Certain		N/A					
D-3.3	EFI Test Signal	1. No Data 2. Corrupted Data	Used mainly for ground testing. No impact.	None	8085, DCB FPGA, Backplane, BEB FPGA, BEB DACs,	Remote-Low	High Rel Parts, Testing, QA Harness	Very High		N/A					
					Connector, Harness										
	EFI Telemetry (TLM)	1. No Data 2. Corrupted Data	No EFI data. Degraded science mission	High	Sensor, Pre-Amp, Connector, Harness, DFB FPGA, Backplane, SDRAM, 8085	Remote-Low	High Rel Parts, Testing, QA Harness	Very High	28	FPGA Worst Case Analysis (WCA), Timing Analysis, Design Review	Aug 2004, before flight build				
	EFI (BEB)	1. No Data	DAC readback	Very Minor	BEB Mux,	Remote-Low	High Rel Parts,	Very High		N/A			╞┼		+
	Analog HK (AHK)	2. Corrupted Data	only. Commanded values known. No impact.		Backplane, DCB ADC, 8085		Testing								
D-3.6	EFI Command (CMD)	1. No Command 2. Corrupted Command	Cannot optimize for data quality. Minor impact.	Minor	8085, DCB FPGA, Backplane, DFB FPGA	Remote-Low	High Rel Parts, Testing	Very High	12	N/A					
	EFI Synch (1PPS)	1. No Synch 2. Intermittent Synch	Required for Data to be obtained by DFB. Degraded Science Mission.	High	DCB FPGA, Backplane, DFB FPGA	Remote-Low	High Rel FPGA, FPGA Testing	Almost Certain	14	N/A					1

Ellen R. Taylor 10/30/2003 5/4/2004

Actions Taken

Page

Responsibility & Target Completion Date

of 1

Vew Sev Vew Occ

lew RPN ew Det

Action Results

Prepared By

FMEA Date Revision Date

System	
Function	
Component	
Design Lead	

to IDP

Failure Mode Effects and Criticality Analysis

Function		Data	-			(Design FME	CA)			Prepared By		en R. Taylor				
Compon Design L		All Dorothy Gordor	n							FMEA Date Revision Date		10/30/2003 5/4/2004			_	
			-								Page	1	(of	1	
					Potential							Action				
ID	Interface	Potential Failure	Potential Effect(s)	Severity	Cause(s)/	Probability	Current Design	Detectability	R P	Recommended	Responsibility & Target		Sev	cc	et	NU
		Mode(s)	of Failure		Mechanism(s) of Failure		Controls		N	Action(s)	Completion Date	Actions Taken	New S	New Occ	ew D	New RPN
					Tunure							<u> </u>	Ž	Ž	Ž	Ž
D-4 ES D-4.1	A Data to IDPU ESA Telemetry	1. No Data	No ESA data.	Moderate	Sensor, Connector,	Remote-Low	High Rel Parts,	Very High	24	FPGA Worst Case	Aug 2004, before	<u>г</u>	ГТ	T		
	(TLM)	2. Corrupted Data	Degraded science mission -		Harness, ETC FPGA, SDRAM,		Testing, QA Harness			Analysis (WCA), Timing Analysis,	flight build		ł			
		Data	ESA not critical		8085		harness			Design Review						
			for minimum mission.										ł			
D-4.2	ESA Analog HK (AHK)	 No Data Corrupted 	HV setting. Minor impact.	Minor	Sensor, Connector, Harness,	Remote-Low	High Rel Parts, Testing, QA	Very High	12	N/A			ł			
		Data			Backplane, FPGA, 8085 Failure		Harness									
					0000 Failure								ł			
D-4.3	ESA Command (CMD)	1. No Command 2. Corrupted	Required for Data. Degraded	Moderate	8085, DCB FPGA, Backplane, ETC	Remote-Low	High Rel Parts, Testing, QA	Almost Certain	12	N/A						
	(Child)	Command	Science Mission.		FPGA, ESA FPGAs		Harness						ł			
P-7.1	ESA Synch (Sun	1. No Synch	Required for	Moderate	DCB FPGA, ETC	Remote-Low	High Rel FPGA,	Almost Certain	12	N/A			\vdash	-	_	
	Pulse)	2. Intermittent Synch	Data. Degraded Science Mission.		FPGA		FPGA Testing			ĺ.			ł			
		Synch	Science Mission.													
P-7.2 P-7.3	SST Analog	1. No Data	No SST data.	Moderate	Sensor DFE,	Remote-Low	High Rel Parts,	Almost Certain	10	N/A				r	1	
r-1.5	Sensor Data	2. Corrupted	SST1 and SST2	Moderate	Connector,	Remote-Low	Testing, QA	Annost Certain	12	N/A						
		Data	provide some redundancy and		Harness, DAP PDFE		Harness									
			science overlap. Slightly degraded										ł			
			science mission													
P-7.4	SST Attenuator	1. No Data	Commanded	None	Mechanism unit,	Remote-Low	High Rel Parts,	Very High		N/A						
	Monitor	2. Corrupted Data	value known, science data		Connector, Harness, DAP		Testing, QA Harness						ł			
			gives other indication. No		FPGA, 8085								ł			
			impact.										ł			
D-5.3	SST Telemetry (TLM)	1. No Data 2. Corrupted	TLM is from SST1 and SST2	High	DAP FPGA, Backplane, ETC	Remote-Low	High Rel Parts, Testing, QA	Very High	28	FPGA Worst Case Analysis (WCA),	Aug 2004, before flight build					
	(11.001)	Data	(no redundancy		FPGA, 8085 Failure		Harness			Timing Analysis,	ingit build		ł			
			on this line). Degraded							Design Review			ł			
			science mission										ł			
D-5.4	SST Analog HK	1. No Data	Voltage and	None	DAP MUX,	Remote-Low	High Rel Parts,	Very High	4	N/A			\vdash	-	_	
	(AHK)	2. Corrupted Data	Temp monitors only. No impact.		Backplane, DCB DAC, 8085 Failure		Testing						ł			
D-5.5	SST Command	1. No Command	Required for	Moderate	8085, DCB FPGA,	Remote-Low	High Rel FPGA,	Almost Certain	12	N/A			H			
	(CMD)	2. Corrupted Command	optimizing data quaility. Slightly		Backplane, ETC FPGA, DAP FPGA		FPGA Testing						ł			
			degraded science mission										ł			
			mission													
DEC	CCT Com als (Com	1 No Coursels	Deresined for	TT:-1-	DOD FROM FTO	Demete I em	High Rel FPGA,	Almost Contain	14	N / A			Щ		_	
D-5.6	SST Synch (Sun Pulse)	1. No Synch 2. Intermittent	Required for Data. Degraded	High	DCB FPGA, ETC FPGA	Remote-Low	FPGA Testing	Almost Certain	14	N/A						
		Synch	Science Mission.										ł			
	NTERFACES													- 1		
	PU Data to BAU IDPU Data, high	1. No Data	All Instrument	Very High	8085, Driver,	Remote-Low	High Rel Parts,	Very High	32	FPGA Worst Case	Aug 2004, before	r r	ΓT		-	
_	rate, to BAU	Corrupted	Data. Could		Connector, Harness		Differential	,		Analysis (WCA),	flight build		ł			
		Data	affect minimum mission				Signals, QA Harness			Timing Analysis, Design Review			ł			
D-6.2	IDPU Data, low rate, to BAU	1. No Data 2. Corrupted	HK and redundant	Low	8085, RS-422 Driver/Reciever,	Remote-Low	High Rel Parts, Differential	Almost Certain		N/A						
	Tate, to BAO	Data	science. Low		Connector, Harness		Signals, QA						ł			
D-7 ID	PU Command/Tir	ning from BAU	impact.				Harness					11	ш			
D-7.1	BAU Command	1. No Data		Moderate	8085, RS-422	Remote-Low	High Rel Parts,	Very High	24	FPGA Worst Case	Aug 2004, before		П			
	to IDPU	2. Corrupted Data	data send. Various impacts		Driver/Reciever, Connector, Harness		Differential Signals, QA			Analysis (WCA), Timing Analysis,	flight build		ł			
			depending on mission phase.				Harness			Design Review			ł			
			-													
D-7.2	BAU Clock (8MHz) to IDPU	1. No Clock 2. Intermittent	Required for all instrument data.	Very High	8085, RS-422 Driver/Reciever,	Remote-Low	High Rel Parts, Differential	Very High	32	FPGA Worst Case Analysis (WCA),	Aug 2004, before flight build		ιT	Τ	T	
	(2.1112) 10 101 0	Clock	Could affect		Connector, Harness		Signals, QA			Timing Analysis,	and build		11			
			minimum mission				Harness			Design Review						
D-7.3	BAU Synch	1. No Synch	No Instrument	Very High	DCB FPGA, RS-422	Remote-Low	High Rel Parts,	Very High	32	Add internal synch	April 2004, before		High	Ren	Ver	14
	(1PPS) to IDPU	2. Intermittent Synch	Data. Could affect minimum		Driver/Reciever, Connector, Harness		Differential Signals, Internal				FPGA design is final	synch pulse on DCB				
			mission				1PPS Synch, QA Harness									
11-73	BAILSun Synch	U No Synch	Internal IDPU	Minor	8085 DCB FPGA	Remote-Low	High Rel Parts	Very High	12	IN / A		4 1	. 1			

nternal Su: Synch, QA Iarness

tS-422 Driver/Reciever, Connector, Harne

in synch vailable. Minor

System Function Compor Design I	ient	THEMIS Data All Dorothy Gordor	-		Failure Mo	de Effects and C (Design FME		lysis		Prepared By FMEA Date Revision Date	1	en R. Taylor 0/30/2003 5/4/2004		of	— — 1
ID	Interface	Potential Failure Mode(s)	Potential Effect(s) of Failure	Severity	Potential Cause(s)/ Mechanism(s) of Failure	Probability	Current Design Controls	Detectability	R P N	Recommended Action(s)	Responsibility & Target Completion Date	Action Actions Taken	Res	ults	New Det New RPN
	PU Core System (_			
D-8.1	PCB/FGE Analog HK (AHK)	1. No Data 2. Corrupted Data	HK only. No impact.	None	PCB MUX, Backplane, DCB ADC, 8085	Remote-Low	High Rel Parts, Testing	Very High		N/A					
D-8.2		1. No Command 2. Corrupted Command	PCB controls power to all instruments. Could be high impact.	High	8085, DCB FPGA, Backplane, ETC FPGA, PCB FPGA	Remote-Low	High Rel FPGA, FPGA Testing	Very High	28	FPGA Worst Case Analysis (WCA), Timing Analysis, Design Review	Aug 2004, before flight build				
D-8.3	PCB Synch (1PPS)	1. No Synch 2. Intermittent Synch	Required for commanding. Could be high impact.	High	DCB FPGA, Backplane, PCB FPGA	Remote-Low	High Rel Parts, Testing	Almost Certain	14	N/A					
D-8.4	PCB EFI Power Control	1. No Data 2. Corrupted Data	No EFI data. Degraded science mission	High	8085, PCB FPGA, FET	Remote-Low	High Rel Parts, Testing	Almost Certain	14	N/A					
D-8.5	PCB SMA Power Control	1. No Control	Affects ability to open ESA door, SST attenuators. Degraded science mission	Moderate	8085, PCB FPGA, FET	Remote-Low	High Rel Parts, Testing	Almost Certain	12	N/A					
D-8.6	LVPS Analog HK (AHK)	1. No Data 2. Corrupted Data	HK only. No impact.	None	LVPS Connector, PCB MUX, Backplane, DCB ADC, 8085	Remote-Low	High Rel Parts, Testing	Almost Certain	2	N/A					

Orig Rev Orig

5-Nov-03

THEMIS COMPONENTS OUTLINE FOR PRA INITIATING EVENT FAILURES AND SOME FAILURE EFFECTS ("MINI" FMEA)

1	ELECTRICAL POWER SUBSYS	TEM
1.1	Solar Arrays	
1.1.1	Top Panel	
1.1.1.1	2 strings	
	Shorted cell:	None (1)
	Open cell:	50% loss of power during launch, contingency,
	•	thruster firings - Some restricted op's;
		Minor Loss of Mission Performance (2)
1112	Coupling Diodes (2 for Top)	
	Shorted diode:	None (1)
	Open diode:	50% loss of power during launch, contingency,
	open diode.	thruster firings - Some restricted op's;
		Minor Loss of Mission Performance (2)
1.1.2	Bottom Panel	Minor Loss of Mission renormance (2)
1.1.2.1	2 strings	
1.1.2.1	Shorted cell:	None (1)
	Open cell:	50% loss of power during launch, contingency,
	Open cen:	thruster firings - Some restricted op's;
		Minor Loss of Mission Performance (2)
1 1 2 2	Coupling Diodos (2 for Pottom)	WINDE LOSS OF WISSION PENOMIANCE (2)
1.1.2.2	Coupling Diodes (2 for Bottom) Shorted diode:	None (1)
	Open diode:	
	Open diode.	50% loss of power during launch, contingency,
		thruster firings - Some restricted op's;
1.1.3	1 Side Denole	Minor Loss of Mission Performance (2)
	4 Side Panels	
1.1.3.1	4 strings per side	None (1)
	Shorted cell:	None (1)
	Open cell:	1/16 loss of power during normal operations -
		Some restricted op's during max eclipse and EOL;
4 4 9 9	Counting Diadag (1 man string)	Minor Loss of Mission Performance (2)
1.1.3.2	Coupling Diodes (1 per string)	Nore (4)
	Shorted diode:	None (1)
	Open diode:	1/16 loss of power during normal operations -
		Some restricted op's during max eclipse and EOL;
4.0	5.4	Minor Loss of Mission Performance (2)
1.2	Battery	1. The better for any descent and see evidence of the
	Battery Catastrophe	Li-lon batteries are dangerous and can explode - personnel or
		LV damage is possible - Cat (5) - This is a safety issue!
	Single Cell Shorts:	Bus voltage a bit low; slight risk to operating battery to
		higher Depth of Discharge - None (1)
	A Cell Opens:	No battery, not a problem until eclipse - Loss of Probe (4)
1.3	Battery Relay (BERB)	
		'Battery ON-Line" before launch.
	Relay resets to "Battery (DFF-Line" during mission:
		No battery, not a problem until eclipse - Loss of Probe (4)

1.4	Shunt Regulation	
1.4.1	Switched Shunts (Quan 3)	
1.4.1.1	Shunt Transistor (1 per shunt)	
	Open:	None (1)
	Short:	25% loss of power during normal op's - Restricted op's
		during eclipse and EOL; Minor Loss of Mission Performance (2)
1.4.1.2	Coupling Diode (1 per shunt)	
	Short:	None (1)
	Open:	25% loss of power during normal op's - Restricted op's
	·	during eclipse and EOL; Minor Loss of Mission Performance (2)
1.4.1.3	Control Circuits	
	Circuit failure:	Probable loss of power - Loss of Probe (4)
1.4.2	Linear Shunt Circuit (Quan 1), All	
	Any failure:	Loss of fine voltage regulation, bus voltage ripple
		excessive, possible degradation of science.
		Major Compromise of Probe Mission Usefulness (3)
1.5	Power Distribution	, , , , , , , , , , , , , , , , , , ,
1.5.1	+28V Unswitched to Transponder	
	Open:	Loss of Transponder - Loss of Probe (4)
1.5.2	+28V to IDPU	
	Open:	Loss of science - Loss of Probe (4)
1.5.3	+28V to Heaters	
	Open:	Loss of temp control during eclipse - Loss of Probe (4)
1.5.4	+28V to RCS Pressure Transduce	
	Open:	None (1)
1.5.5	+28V to Instruments	
	One-time use for initial deplo	byment of science instrument booms.
	Open at initial usage:	Loss of science - Loss of Probe (4)
	Open at later time:	None (1)
1.5.6	+28V to S/C Heaters	
	Open:	Loss of temp control during eclipse - Loss of Probe (4)
1.5.7	+28V to Instrument Heaters	
	Open:	Loss of temp control during eclipse - Loss of Probe (4)
1.5.8	+28V to RCS Heaters	
	Open:	Loss of temp control during eclipse - Loss of Probe (4)
1.5.9	+28V Pulses to BERB	
	Not used after launch	None (1)
1.5.10	+28V Pulses to RCS Latch Valves	3
	One-shot usage after launch	λ.
	Fails to Operate:	Loss of RCS - Loss of Probe (4)
1.5.11	+28V Pulses to RCS Thruster Val	ves
	Thruster Failure to Operat	e
		Thrusters T1 or T2: Loss of RCS - Loss of Probe (4)
		Thrusters A1 or A2: Loss of Spin axis precession control.
		Major Compromise (3)

1.5.12	+28V Pulses to Pyro Arm One-shot usage after laund	ch.
	Fails to Operate:	No separation - Loss of Probe (4)
1.5.13	+28V Pulses to Pyro Fire	
	One-shot usage after laund	ch.
	Fails to Operate:	No separation - Loss of Probe (4)
1.5.14	Power Distribution and LVPS +5	V to Backplane
	Fails to Operate:	No power - Loss of Probe (4)
1.5.15	Power Distribution and LVPS +3	.3V to Backplane
	Fails to Operate:	No power - Loss of Probe (4)
1.5.16	Power Distribution and LVPS +3	.3V(2.5) to Backplane
	•	No power - Loss of Probe (4)
1.5.17	Power Distribution and LVPS +/-	15V to Backplane
	•	No power - Loss of Probe (4)
1.5.18	Power Distribution and LVPS +/-	5V to Gyros
	Fails to Operate:	No gyros - Possible work-around using Magnetometer. Major Compromise (3)
1.5.19	Power Distribution and LVPS +5	V to Sun Sensor
	Fails to Operate:	No Sun Sensor - Major degradation, Possible work-around
		using Magnetometer at perigee, questionable operations.
		Major Compromise (3)

2 ATTITUDE CONTROL SUBSYSTEM

2.1	Sun Sensor	
	Fails to Operate:	No Sun Sensor - Major degradation, Possible work-around using
		Magnetometer at perigee, questionable operations.
		Major Compromise (3)
2.2	Solid State Gyros (Quan 2)	
	One Fails to Operate:	Only one gyro - Work-around is clumsy.
		Some Compromise (2)
	Both Fail to Operate:	No gyros - Possible work-around using Magnetometer.
	-	Major Compromise (3)
2.3	3-Axis Magnetometer (FGM Ins	trument)
	Fails to Operate:	No Earth's magnetic vector data.
	-	Science: Loss of Probe (4)
		Attitude Control: Major degradation, Possible work-around using Sun Sensor,
		questionable operations - Major Compromise (3) (But Probe is useless anyway.)
2.4	Software Functions (Physically	located on and executed by ColdFire Processor)
	Fails to Operate:	Loss of Probe (4)

3 3.1	REACTION CONTROL SUBSYS	STEM
	Fails to Operate:	Can't thrust properly - Loss of Probe (4)
3.2	Tanks (Quan 2) Either Leak, Rupture:	Tanks cannot be isolated, loss of fuel - Loss of Probe (4)
3.3	Flight Pressure Transducer Fails to Operate:	No effect - None (1)
3.4	Thermistors Fail to Operate:	No effect - None (1)
3.5	PRTs Fail to Operate:	No effect - None (1)
3.6	Pressure/Vent Valve (Quan 1, M	anual)
3.7	No Credible Failure: Fill/Drain Valve (Quan 1 per Tan	
3.8	No Credible Failure: System Filter (Quan 2)	GSE ops only, no effect - None (1)
	Either Filter Clogs:	Cannot access fuel from one Tank. Consequence to
		THEMIS mission depends upon what orbital position is occupied by the Probe with the clogged RCS filter. Orbits 1 and 2 (outer orbits) need both tanks of fuel
		to reach EOL. Orbits 3,4,5 (inner orbits) need only one tank of fuel to reach EOL. For outer orbits the Probe may not reach EOL.
		•
		Clogged Filter, Probes 1 or 2: Early in life, Major Compromise (3) Clogged Filter, Probes 1 or 2: Late in life, Loss of Probe (4)
		Clogged Filter, Probes 3,4, or 5: Early in life, Some Compromise (2)
2.0	Latah Malva (Quan 2)	Clogged Filter, Probes 3,4, or 5: Late in life, Major Compromise (3)
3.9	Latch Valve (Quan 2) Valve Stuck Closed:	Both Valves are normally Open during mission life. With a closed Latch Valve,
	valve oluck closed.	cannot access fuel in one Tank. Consequence to THEMIS mission depends upon
		what orbital position is occupied by the Probe with the closed Latch Valve.
		Orbits 1 and 2 (outer orbits) need both tanks of fuel to reach EOL. Orbits 3,4,5
		(inner orbits) need only one tank of fuel to reach EOL. For outer orbits the Probe
		may not reach EOL.
		Valve Stuck Closed, Probes 1 or 2: Early in life, Major Compromise (3)
		Valve Stuck Closed, Probes 1 or 2: Late in life, Loss of Probe (4)
		Valve Stuck Closed, Probes 3,4, or 5: Early in life, Some Compromise (2) Valve Stuck Closed, Probes 3,4, or 5: Late in life, Major Compromise (3)
3.10	Orifice (Quan 2)	
0.44	No Credible Failure Mode	
3.11	Lines	Loss of Probe (4).
3.12	Fuel leak, Any Line	series strings powered redundantly)
0.12		g Loss of redundancy, otherwise no effect - None (1).
		c Line freezes during eclipse - Loss of Probe (4).
3.13	Tank Heaters (These are redund	
		g Loss of redundancy, otherwise no effect - None (1).
		ng Tank freezes during eclipse - Loss of Probe (4).
3.14	Thruster Heaters (These are red Loss of One Heater	Loss of redundancy, otherwise no effect - None (1).
	Loss of Both Heaters	Thruster freezes during eclipse; all four thrusters are required.
		Loss of Probe (4).
3.15	Thruster Valve (Quan 2 in series	
	Either But Not Both Valve	e Seats Stuck in "Firing" Position
	Dath Makes Casta Otuala i	Loss of redundancy, otherwise no effect - None (1).
	Both Valve Seats Stuck in	Thruster fires continuously - Loss of Probe (4).
	Either Or Both Valve Sea	ts Stuck in "Non-Fire" Position
		Cannot use thruster - Loss of Probe (4).
3.16	CatBed Heater (These are redur	
	Loss of One CatBed Heat	te Loss of redundancy, otherwise no effect - None (1).
	Loss of Both CatBed Hea	t Cannot safely use thruster during eclipse - Loss of Probe (4).

4	COMMUNICATION SUBSYSTE	EM
4.1	Antenna	
	Fails to Operate:	Loss of Probe (4)
4.2	Transponder	
4.2.1	Receiver	
	Fails to Operate:	Loss of Probe (4)
4.2.2	Transmitter	
	Fails to Operate:	Loss of Probe (4)
4.2.3	Diplexer	
	Fails to Operate:	Loss of Probe (4)
4.3	Uplink FPGA on Communicatio	
	Fails to Operate:	Loss of Probe (4)
		This FPGA contains the following functions:
		Uplink Command Interface
		Command Verification
		Hardware Command Interface
4.4	Command FIFO (One Integrate	
-11	Fails to Operate:	Loss of Probe (4)
4.5	Discrete Command Generator (
1.0	Fails to Operate:	Loss of Probe (4)
4.6	Separation Interface (Telemetry	
4.0	Fail to Operate:	No effect - None (1)
4.7	Analog Telemetry Current Sour	
-1.7	Fails to Operate:	Loss of important telemetry - Severe degradation, Probe
		survival and usefulness questionable - Major Degradation (3)
4.8	Analog Telemetry Multiplexer	
	Fails to Operate:	Loss of important telemetry - Severe degradation, Probe
	•	survival and usefulness questionable - Major Degradation (3)
4.9	Telemetry Processor (Part of Po	
	Fails to Operate:	Loss of important telemetry - Severe degradation, Probe
	•	survival and usefulness guestionable - Major Degradation (3)
4.10	Telemetry FIFO (One Integrate	d Circuit Device)
	Fails to Operate:	Loss of entire downlink - Loss of Probe (4)
4.11	Reed-Solomon Encoder (One li	
	Fails to Operate:	Loss of entire downlink - Loss of Probe (4)
	•	(Recommend consideration of a bypass capability.)
4.12	Downlink FPGA on Communica	
	Fails to Operate:	Loss of Probe (4)
	•	This FPGA contains the following functions:
		Convolutional Encoder
		Downlink Telemetry Interface
		(Recommend consideration of a Convolutional Encoder bypass capability.)
4.13	Software Functions (Physically	located on and executed by ColdFire Processor)
-	Fails to Operate:	Loss of Probe (4)

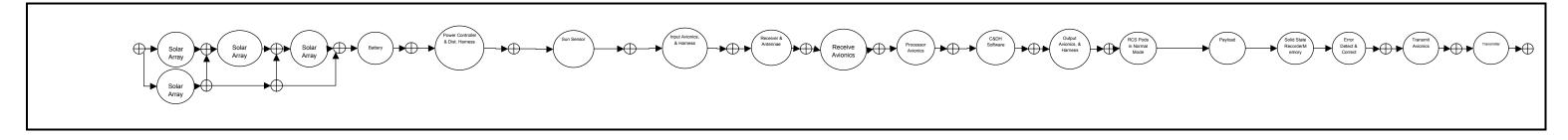
5 5.1	C&DH/PROCESSOR SUBSYST	EM
5.1	Fails to Operate:	Loss of Probe (4)
5.2	ColdFire Processor	
5.3	Fails to Operate: Processor FPGA	Loss of Probe (4)
0.0	Fails to Operate:	Loss of Probe (4)
5.4	RAM	
	Fails to Operate:	Loss of Probe (4)
5.5	Boot PROM	
	Fails to Operate:	Loss of Probe (4)
5.6	Program Storage EEPROM	Lass of Darks (4)
F 7	Fails to Operate:	Loss of Probe (4)
5.7	RS-422 Command Driver to IDPL Fails to Operate:	Loss of Probe (4)
5.8	RS-422 Status Receiver from IDF	
0.0	Fails to Operate:	Probably not critical - Some Compromise (2)
5.9	RS-422 2Mbps Data Receiver fro	, , , , , , , , , ,
	Fails to Operate:	Loss of Probe (4)
5.10	RS-422 Clock Interfaces to IDPU	
	Fails to Operate:	Loss of Probe (4)
5.11	RS-422 One PPS Interfaces to ID	-
	Fails to Operate:	Loss of timing sync to IPDU - Degraded science,
F 40	Que Dulas lataríase ta IDDU	usefulness questionable - Major Degradation (3)
5.12	Sun Pulse Interface to IDPU	Lass of animper sympto IDDU . Degraded ecience
	Fails to Operate:	Loss of spinner sync to IPDU - Degraded science, usefulness questionable - Major Degradation (3)
5.13	3.3V Power Switch to EEPROMs	
0110	Fails Shorted:	No effect other than increased power consumption - None (1)
	Fails Open:	Cannot re-load flight application software; no effect unless rebooting
		Some Compromise (2)
5.14	Bulk Memory	
	Fails to Operate:	Loss of Probe (4)
5.15	Bulk Memory FPGA	Less of Drahe (4)
5.16	Fails to Operate:	Loss of Probe (4) cated on and executed by ColdFire Processor)
5.10	Fails to Operate:	Loss of Probe (4)

6	BACKPLANE	
6.1	I ² C Interfaces (Quan 3)	
	Any Fails to Operate:	Loss of Probe (4)
7	HARNESS AND GROUNDING	
7.1	Pyro Arm Plug	
	No Credible Failure	Plug with jumper wires installed before flight.
7.2	RCS Arm Plug	
	No Credible Failure	Plug with jumper wires installed before flight.
7.3	Fusing (Steered Redundant) - fo	r non-critical loads only
7.3.1	Gyro +/-5V power	
	One Fuse Fails Open:	None (1)
	Both Fuses Fail Open:	No gyros - Possible work-around using Magnetometer. Major Compromise (3)
7.3.2	Bus heaters	
	One Fuse Fails Open:	None (1)
	Both Fuses Fail Open:	Loss of temp control during eclipse. Loss of Probe (4)
7.3.3	RCS heaters	
	One Fuse Fails Open:	None (1)
	Both Fuses Fail Open:	Loss of temp control during eclipse.
		Loss of Probe (4)
7.3.4	Instrument heaters	
	One Fuse Fails Open:	None (1)
	Both Fuses Fail Open:	Loss of temp control during eclipse.
		Loss of Probe (4)
7.3.5	Pressure Transducer	
	One Fuse Fails Open:	None (1)
	Both Fuses Fail Open:	Loss of RCS pressure tlm - None (1)
7.4	Primary Return wires	
	Wire Fails Open:	Loss of power - Loss of Probe (4)
7.5	Secondary/Signal Return wires	
	Wire Fails Open:	Loss of power and/or signal return - Loss of Probe (4)
7.6	Chassis Return wires	
	Wire Fails Open:	Loss of chassis ground, ops probably okay except noisy, probable degradation of science - Some Compromise (2)

FAILURE SEVERITY (CONSEQUENCE) CATEGORIES

- 5 Death/Injury of One or More Personnel; Loss/Damage to Launch Vehicle
- 4 Complete Loss of Probe (If this Probe is mission-critical; Loss of Minimum Mission)
- 3 Major Compromise of Probe Mission Usefulness (If this Probe is mission-critical; Retention of Minimum Mission but Major Degradation of Mission Performance)
- 2 Some Compromise of Probe Mission Usefulness (If this Probe is mission-critical; Minor Loss of Some Mission Performance)
- 1 No Effect upon Probe Mission Usefulness

FAILURE PROBABILITY (FREQUENCY) CATEGORIES 2 YEAR (17,520 HOURS) MISSION


LOG SCALE

- 4 P(S) < 0.9000 P(F) > 0.1000
- 3 0.9000 ≤ P(S) < 0.9900 0.1000 ≥ P(F) > 0.0100
- 2 0.9900 ≤ P(S) < 0.9990 0.0100 ≥ P(F) > 0.0010
- 1 0.9990 ≤ P(S) < 0.9999 0.0010 ≥ P(F) > 0.0001

6-Sep-2002											
rep											
Rev Orig											
Estimated MTBF, FITs =	100	100	800	300	600	2000	400	600	100	600	600
(pe	er array side)					(Receive part of			(software, patchable,		
(Based upon EO-1 Red Team estimates	from TRW)					S-band xpnder)			S/C safe until patch)		
	,					· ,			1 ,		

T, Years = 1 1																
T, Hours = 8760 System Function	<u>Solar Array</u>	<u>Power System</u> <u>Battery</u>	Power Control Electronics	<u>Measure</u> <u>Attitude</u>	<u>Collect and</u> <u>Control-Critical</u> Data <u>Input Avionics</u>	<u>Collect Command</u> <u>Regarding</u> <u>Receiver and</u> <u>Antenna</u>		Maneuver Cont	rol Processing C&DH Software	<u>Relay</u> <u>Actions</u>	Angular and Translation Actuation	<u>Collect</u> Payload Data	Store	<u>Data</u>	<u>Transmi</u> <u>Transmit Avionics</u>	<u>t Data</u> Transmitter and <u>Antenna</u>
Component Item	R _{SA}	R _{BAT}	R _{PCE}	R _{ss}	RIA	R _{Rx}	R _{RA}	R _{PA}	R _{sw}	R _{OA}	R _{RCSpod}	R _{Payload}	R _{ssr}	R _{EDAC}	R _{TA}	R _{Tx}
Functional String Reliability	0.9991	0.9991	0.9930	0.9974	0.9948	0.9826	0.9965	0.9948	0.9991	0.9948	0.9948	1.0000	0.9948	0.9974	0.9965	0.9741
System Function Reliability	0.999995	0.9991	0.9930	0.9974	0.9948	0.9826	0.9965	0.9948	0.9991	0.9948	0.9895	1.0000	0.9948	0.9974	0.9965	0.9741
Satellite Reliability	0.9081															

T, Years = 2 T, Hours = 17520 <u>System Function</u>	<u>Solar Array</u>	<u>Power System</u> <u>Battery</u>	Power Control Electronics	THEMIS 2 Year Missi Measure <u>Attitude</u>	<u>Collect and</u> <u>Control-Critical</u> <u>Data</u> Input Avionics	Collect Command Regarding <u>Receiver and</u> <u>Antenna</u>	Instructions		trol Processing C&DH Software	<u>Relay</u> <u>Actions</u>	Angular and Translation Actuation	<u>Collect</u> Payload <u>Data</u>	Store	<u>Data</u>	<u>Transmi</u> Transmit Avionics	i <u>t Data</u> <u>Transmitter and</u> <u>Antenna</u>
Component Item	R _{SA}	R _{BAT}	R _{PCE}	R _{ss}	R _{IA}	R _{Rx}	R _{RA}	R _{PA}	R _{sw}	R _{OA}	R _{RCSpod}	R _{Payload}	R _{ssr}	R _{EDAC}	R _{TA}	R _{Tx}
Functional String Reliability	0.9982	0.9982	0.9861	0.9948	0.9895	0.9656	0.9930	0.9895	0.9982	0.9895	0.9895	1.0000	0.9895	0.9948	0.9930	0.9488
System Function Reliability	0.999982	0.9982	0.9861	0.9948	0.9895	0.9656	0.9930	0.9895	0.9982	0.9895	0.9792	1.0000	0.9895	0.9948	0.9930	0.9488
	0.8247		•	• •		•			•			•			•	

0	600	300	400	3000
(payload "0" failure)				(Xmit part of
				S-band xpnder)

THEMIS 1 YEAR MISSION RESULTS

Number of Total Probes in Constellation									
	Ps (sat) N								
		0.908	4	1					
Series Terms	4	0.312							
	5	0.618							
	6	#NUM!							
	7	#NUM!							
System Probability		0.930							

THEMIS 2 YEAR MISSION RESULTS

Number of Total Probes in Constellation									
	Ps (sat) N								
		0.825	4	1					
Series Terms	4	0.405							
	5	0.381							
	6	#NUM!							
	7	#NUM!							
System Probability		0.787							