

THEMIS

Mission Requirements Document

THM-SYS-001

Revision A, July 2003

Prepared By:

Ellen R. Taylor, THEMIS Mission Systems Engineer University of California, Berkeley

Kevin Brenneman, THEMIS Probe Systems Engineering Swales Aerospace

Approved By: _

Vassilis Angelopoulos, THEMIS PI University of California, Berkeley

Peter R. Harvey, THEMIS Project Manager University of California, Berkeley

Tom Ajluini, THEMIS Probe Systems Engineer Swales Aerospace

DOCUMENT REVISION RECORD

Rev	Date	Description of Change	POC
Draft			
1	8/25/02	Began Drafting Mission Requirements from Proposal	PRH
2,3,4	4/23/03	Began Refining Mission Requirements from Concept Study Review (CSR)	ERT
5,6,7	5/25/03	Moved Mission Requirements into agreed-upon database format	ERT
8	5/28/03	Refined Mission Requirements from Instrument/Probe Internal Reviews (5/27, 5/28)	ERT
9a,9b	6/2/03	Added Scope, Flow, Definitions, Traceability, Trees Pages, and modified PB/PC subsystem requirements.	KSB
10	6/2/03	Added Rationale for Systems, IDPU Requirements.	ERT
11	6/3/03	Changed Level for many Mission Requirements from 2-System to 2-Space Seg.	KSB
12	6/7/03	Refined Mission Requirements from Science Requirements Review (6/3, 6/4)	ERT
13a	6/11/03	Implemented tools, incorporated all subsystem requirements, started linking subsystem req up to Mission.	KSB
		Highlighted changes in red text.	
13b	6/12/03	Incorporated all changes from Swales internal reviews of Programmatic, Mission, PB, and subsystem requirements,	KSB
		started linking subsystem req up to Mission/Programmtic. Highlighted changes in red text.	
		Changed Scope, Flow, and Definitions pages.	
14	6/14/03	Red text changed to black text for accepted changes.	ERT
15	6/19/03	Refined Mission Requirements from Swales Requirements Review (6/17, 6/18)	ERT
16b	6/25/03	Updated PB/PC subsystems, and added Parent Ids.	KSB
16c	6/26/03	Refined Mission Requirements from Mission Requirements Dry Run Review (6/24, 6/25)	ERT
16d	7/1/03	Added Traceability Tree. Highlighted changes in red text.	ERT
16e	7/2/03	Changed requirements, titles, rationales (deleted text deleted, added text in red): IN.BOOM-1,2; PB-41, 42,44,45;	KSB
		PB.ACS-5, 6, 7, 8, 13, 14, 17, 18, 19; PB.CDH-28, 31, 39, 41; PB.Mec-6, 8, 9, 10, 11; PC-1, 2, 9; PC.Mec-1, 2, 6.	
17	7/2/03	Added Ground Segment. Cover Page, Signiture Page. Small changes to traceability tree.	ERT
REV			Approval
A	7/8/03	First Release of Mission Requirements Document at System Requirements Review (SRR)	ERT

DISTRIBUTION LIST

lame, Email, Phone Number

TBD LIST

Identifier	Description

1 Introduction

1.1	Scope	1
1.2	Applicable Documents	1
1.3	Reference Documents	. 2
1.4	Approvals	. 2
1.5	Revisions	2
1.6	Mission Science Objectives	. 2
1.7	Mission and Instrument Description	3
1.8	Mission Operations Concept	4
1.9	Requirement Flow-down	6
1.10	Definitions	7
2	Mission Requirements Table	
2.1	Level 1 Science and Programmatic Requirements	9
2.1.1	Level 1 Science Requirements	9
2.1.2	Science Data Requirements	10
2.2	Programmatic Requirements	11
2.2.1	Cost	11
2.2.2	Schedule	11
2.2.3	Reliability and Quality Assurance	11
2.2.4	Safety	. 11
2.2.5	Risk and Anomaly Reporting	. 11
2.3	Mission Requirements	12
2.3.1	Lifetime and Radiation	12
2.3.2	Fault Tolerance	12
2.3.3	Mission Design	12
2.3.4	Resource Budgets	13
2.3.5	Contamination	13
2.3.6	Interface Requirements	13
2.3.7	Test Requirements	14
2.3.8	Launch Vehicle	14
2.3.9	Ground Station	. 14

 2.4.1 Electric Field Instrument (EFI) 2.4.2 Electrostatic Analyzer (ESA) 2.4.3 Solid State Telescope (SST) 2.4.4 Fluxgate Magnetometer (FGM) 2.4.5 Search Coil Magnetometer (SCM) 2.4.6 Boom Requirements 2.4.7 Instrument Data Processing Unit (IDPU) 	
 2.4.2 Electrostatic Analyzer (ESA) 2.4.3 Solid State Telescope (SST) 2.4.4 Fluxgate Magnetometer (FGM) 2.4.5 Search Coil Magnetometer (SCM) 2.4.6 Boom Requirements 2.4.7 Instrument Data Processing Unit (IDDU) 	16 17 18 18 18 19
 2.4.3 Solid State Telescope (SST) 2.4.4 Fluxgate Magnetometer (FGM) 2.4.5 Search Coil Magnetometer (SCM) 2.4.6 Boom Requirements 2.4.7 Instrument Data Processing Unit (IDPU) 	
 2.4.4 Fluxgate Magnetometer (FGM) 2.4.5 Search Coil Magnetometer (SCM) 2.4.6 Boom Requirements 2.4.7 Instrument Data Processing Unit (IDPU) 	18 18 18 19
 2.4.5 Search Coil Magnetometer (SCM) 2.4.6 Boom Requirements 2.4.7 Instrument Data Processing Unit (IDPLI) 	18 18 19
2.4.6 Boom Requirements	18 19
2.4.7 Instrument Date Dreassing Unit (IDDU)	19
2.5 Probe Bus	22
2.5.1 Communications	
2.5.2 Attitude Control and Determination	25
2.5.3 Reaction Control System	26
2.5.4 Electrical Power System	
2.5.5 Command and Data Handling	
2.5.6 Flight Software	30
2.5.7 Mechanical	
2.5.8 Thermal	31
2.5.9 Harness	
2.6 Probe Carrier	33
2.6.1 Mechanical	33
2.6.2 Thermal	
2.6.3 Harness	
2.6.4 Attitude Control	
2.7 Ground System	
2.7.1 Ground Station	
2.7.2 Mission Operations Center	35
2.7.3 Mission Operations	
2.7.4 Science Operations Center	
2.8 Ground Based Observations	37
2.8.1 All Sky Imager	
2.8.2 Ground Magnetometer	
2.8.3 Observatory	
2.8.4 Ground Site	38

3 Requirement Traceability

1.1 Scope

The THEMIS Mission Requirements Document (MRD) establishes the functional, performance and design requirements for the THEMIS Mission. It provides an official list of Level 2 (Space, Launch and Ground Segments) and Level 3/4 (Derived Instrument, Probe Bus, Probe Bus Carrier, Ground Based Observations, and Mission Operations down to the Subsystem Level) requirements. Level 1 Requirements (Science and Programmatic) are documented in *Program Level Requirements for the THEMIS Mission* and included here to illustrate requirement flow-down and trace-ability. Interface requirements are specified in Interface Control Documents (ICDs) between the space segment (*Instrument-to-Probe ICDs, Instrument-to-IDPU ICDs*); launch segment (*Probe-to-Launch Vehicle ICD*); and ground segment (*Probe-to-MOC ICD, MOC-to-SOC ICD*). Design verification and environmental test requirements are specified in the *THEMIS Verification and Environmental Test Specification*. Quality assurance and part selection requirements are documented in the *THEMIS Performance Assurance and Implementation Plan (PAIP*).

1.2 Applicable Documents

Figure 1 shows the parent documents levied on the project from which mission requirements have been transferred or derived.

NASA Controlled Documents

1.3 Reference Documents

The following project documents are referenced in this MRD as separately binding documents.

THEMIS Magnetics Cleanliness Plan THEMIS Contamination Control Plan THEMIS Electrostatic Cleanliness Plan THEMIS Performance Assurance and Implementation Plan THEMIS Verification Plan and Environmental Test Specification THEMIS Electrical System Specification THEMIS Electrical System Specification THEMIS Instrument-to-Probe ICDs THEMIS Instrument-to-IDPU ICDs THEMIS Probe-to-IDPU ICD THEMIS Ground System ICDs (Space-to-Ground link, Ground Station, Data System) Boeing Mission Specification for the THEMIS Mission THEMIS Probe-to-Probe Carrier ICD THEMIS Flight Software Specifications

1.4 Revisions

This Mission Requirements Document (MRD) shall be approved and signed by the authorized representatives of UCB and Swales. Each signatory is responsible for informing and obtaining concurrences from all cognizant members of their organization. The document shall become effective when signed by all relevant parties, and is binding on the organizations until mutually agreed upon revisions are released. Unsigned copies of this document are considered to be "Preliminary Only," and subject to internal changes.

1.5 Approvals

Request for revisions to the MRD are made through a formal change process. UCB is responsible for oversight of revisions and will maintain documentation for all change requests. Any changes must be routed to the Mission System Engineer, who will obtain the necessary agreement from scientists and engineers (starting with those people on the signature page, but also including subsystem leads for any affected systems) before posting it as the official version. Changes are approved and signed by the authorized representatives of UCB and Swales.

1.6 Mission Science Objectives

The THEMIS (Time History of Events and Macroscale Interactions During Substorms) Mission, a NASA Middle Explorer (MIDEX) program, is aimed at understanding the onset and macroscale evolution of magnetospheric substorms. A substorm is an instability in the circulation of magnetic flux and plasma through the solar wind-magnetospheric system ultimately linked to the familiar auroral eruptions on Earth's polar ionosphere. THEMIS will determine for the first time when and where in the magnetosphere substorms start, and how they evolve macroscopically. Specifically, THEMIS will:

- · Establish when and where substorms start;
- · Determine how the individual substorm components interact macroscopically;
- \cdot Determine how substorms power the aurora; and
- · Identify how the substorm instability couples dynamically to local current disruption modes.

Figure 2 shows the THEMIS baseline goals and objectives:

	Science Objective		Science Goal		
ary	l evolution n instability	 Time history of auroral breakup, current disruption, and lobe flux dissipation at the substorm meridian by timing: Onset time of auroral breakup, current disruption and reconnection within <10s. Ground onset location within 0.5° in longitude and in space within 1R_E. 			
Prin	Onset and of substorm	Macroscale inter ruption and near- Coupling betwee the auroral ionos	action between current dis- Earth reconnection. n the substorm current and phere.		
		Cross-scale energ macroscale subst processes at the o	gy coupling between the orm instability and local current disruption site.		
Secon- dary	At radiatio tion of sto el	n belts: Produc- orm-time MeV ectrons	Source and acceleration mechanism of storm-time MeV electrons		
Tertiary	At dayside: wind-mag pling by up	Control of solar netosphere cou- stream processes	The nature, extent and cause of magnetopause transient events.		

Figure 2: THEMIS Baseline Goals and Objectives

1.7 Mission and Instrument Description

The THEMIS science objectives are achieved by five space probes in high earth orbits (HEO) with similar perigee altitudes (1.16 to 1.5 earth radii, Re) and varying apogee altitudes (12.1 to 30 Re). The probes align within the plane of the substorm instability, providing plasma particle and field signatures at several locations in the Earth's magnetotail. Simultaneously, a dense network of ground observatories monitor auroral light and ionospheric currents to provide the time, location, and evolution of the auroral manifestation of the substorm.

The THEMIS probes are launched on a Delta II launch vehicle into a direct injection orbit close to the final science orbit of the 3 inner probes. An on-board hydrazine propulsion reaction control system (RCS) performs the placement of each probe into its final orbit. The probes are spin-stabilized with a passive thermal design. Power from body-mounted solar panels and a Li lon battery is controlled by a direct energy transfer system. Instrument and probe components are mounted on a stiff base-plate within a composite bus structure. Science and housekeeping data is downlinked daily to the primary ground station at the University of California - Berkeley (UCB) through a low-rate S-band communication system.

Each Probe carries and Instrument Payload comprised of: an Electric Field Instrument (EFI); an Electrostatic Analyzer (ESA); a Solid State Telescope (SST); a FluxGate Magnetometer (FGM); and a Search Coil Magnetometers (SCM).

1.8 Mission Operation Concept

PRELAUNCH:

Configuration: All five probes mounted on the carrier installed on the vehicle.

Communications via hardline only, no RF. Probes monitored and communicated with one at time round robin style from a single set of remotely operated EGSE from KSC for prelaunch testing and to configure for liftoff. All launch operations are conducted locally from KSC. Ready for launch requires Go from probe console at KSC and Go from Mission Operations Center at UCB for TDRSS, BGS, USN/Perth and Operations Center.

LAUNCH AND ASCENT:

Configuration: Starts with all five probes mounted on the carrier, end with each probe on-orbit. Instruments and IDPU off, Probe in launch mode.

Each probe becomes autonomous at liftoff as the umbilical is separated. One designated probe will begin transmitting RF at 1 kbps upon fairing separation for reception by TDRSS to Mission Operations Center at UCB. The probes sense vehicle staging and initiate separation into a safe and stable configuration. UCB initiates communication with each probe one at a time round robin style to assess health and safety (the receivers in all five probes are always powered; only the transmitter needs to be turned on). Initial assessment focused on power system performance: battery DOD, array voltage and currents, etc. followed by other bus subsystems: propulsion system status, spin axis orientation, spin rate, sun angle, etc.

EARLY ORBIT OPERATIONS:

Configuration: Starts with each probe in the on orbit stowed configuration with the Instruments and IDPU off. Probes are spinning at approximately 15 rpm with the spin axis pointed normal to the plane of the ecliptic.

Each probe powers on the IDPU and instrument health assessed one at a time. Preliminary assignment to orbital slot is made. Thruster calibration occurs and both magnetometer and sun sensor data are telemetered to the Mission Operations Center to compute the on orbit attitude and all maneuvers.

Thruster Firing Mode: Dial down ESA high voltage, enable FDC, Transmitter ON, bus power negative

Communications Mode: Transmitter ON, bus power negative (battery discharging)

All Probes go through Delta-V maneuvers to align the constellation for the upcoming wedding season.

Once a probe is in the desired orbit the EFI deployment begins. Radial EFI's are deployed in opposing pairs in steps interspersed with thruster firings to maintain proper spin rate. After all four radial wire booms are completely deployed the axial booms are deployed. All deployments occur only during ground contact.

MISSION OPERATIONS:

Configuration: Each probe has all instruments fully deployed and is in the desired target orbit for the next wedding season. Probes are spinning at approximately 15 rpm with the spin axis pointed within 10 degrees of normal to the plane of the ecliptic.

Probe Bus Avionics Unit (BAU) passes raw sun sensor data to IDPU for science assessment of spin rate and sun position. IDPU and BAU exchange routine housekeeping data. BAU passes commands from the ground to the IDPU.

Ephemeris comes from periodic two way Doppler ranging between BGS and the probe transponder with additional data from NORAD.

Each probe has at least a single pass per day scheduled to provide the mission operations team insight into ongoing health and safety and to downlink all engineering telemetry and any science data.

Expect Delta-V maneuvers for each probe several times a year for shadow avoidance and constellation alignment maintenance, especially for lunar perturbations on P1 and P2.

END OF LIFE:

Perform a depletion burn to expend all remaining propellant and minimize remaining orbital lifetime. Retract wire booms if possible to minimize potential for orbital debris.

1.9 Requirement Flow-down

Figure 3 illustrates the THEMIS requirement flow-down. All requirements are mapped to WBS level in the Requirements Table.

Figure 3: THEMIS Requirement Flow-down

1.10 Requirement Table Definition

Attribute	Description
Organization	Identify which organization is responsible for generating this requirement
Owner	Identify which individual is responsible for verifying this requirement
WBS	WBS number, e.g. WBS-2.2.2 (for Probe Bus)
ID	Unique identification number, e.g. PB-356 (for Probe Bus)
	See Key below for a complete list
Level	Drivers (Level 1), System/Segment (Level 2), Element (Level 3), Subsystem
	(Level 4)
Title	Descriptive title
Statement	Requirement statement:
	"Theshall provide",
	"The shall weigh less than", etc.)
Rationale	Explanation/context of requirement
Parent ID	ID of immediate higher level requirement
Source	Source of requirement (Design description document, Element Spec, analysis,
	best practice, etc.)
Child ID	ID of immediate lower level requirement
Status	TBD, TBR, Defined, Approved, Verified, Deleted
Verification method	Inspection / Analysis / Demonstration / Test : Description of type of test, if
	needed (i.e. a Verification Requirement)
Verification Procedure	Procedure in which the requirement is verified
Verification Result	Summarizes verification results
Change history	Change History

The Requirements Table is composed of the following specific columns:

Each Requirement has a specific ID number which adheres to the following key:

KEY: Requirements ID Labeling					
Prefix	Definition				
S	Science (Drivers) Requirements				
Р	Progammatic/Rules/Operations (Drivers)				
Μ	Mission (System/Segment)				
IN	Instrument (Element)				
PB	Probe Bus (Element)				
PC	Probe Carrier (Element)				
GS	Operation/Ground Station (Element)				
GB	Ground Based Observatory (Element)				

Note: All labels below are at the Subsystem level						
IN.DPU	Instrument Data Processing Unit					
IN.EFI	Electric Field Instrument					
IN.ESA	Electrostatic Analyzer					
IN.SST	Solid State Telescope					
IN.FGM	Fluxgate Magnetometer					
IN.SCM	Search Coil Magnetometer					
PB.Com	PB Communications					
PB.ACS	PB Attitude Control System					
PB.RCS	PB Reaction Control System					
PB.EPS	PB Electrical Power System					
PB.CDH	PB Command & Data Handling					
PB.FSW	PB Flight Software					
PB.Mec	PB Mechanical Systems					
PB.Thm	PB Thermal Systems					
PB.Hrn	PB Harnesses					
PC.Mec	PC Mechanical Systems					
PC.Thm	PC Thermal Systems					
PC.Hrn	PC Harnesses					
GS.STN	GB Ground Station					
GS.MOC	GB Mission Operations Center					
GS.OPS	GB Operations					
GS.SOC	GB Science Operations Center					
GB.ASI	GB All Sky Instrument					
GB.MAG	GB Ground Magnetometer					
GB.OBS	GB Observatory					
GB.GnS	GB Ground Site					

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Science	Requirements	s (S-#)	1	1				
UCB	VA	WBS 1.2	S-1	1-Drivers	Substorm Onset Time	Determine substorm onset time and substorm meridian magnetic local time (MLT) using ground ASIs (one per MLT hr) and MAGs (two per MLT hr) with t_res<30s and dMLT<1 degree respectively, in an 8hr geographic local time sector including the US.	Primary Science Objective - Onset and evolution of substorm instability. Science Goal 1: Time History of auroral breakup, current disruption (CD), and lobe flux dissipation at the substorm meridian	N/A
UCB	VA	WBS 1.2	S-2	1-Drivers	Current Disruption Onset Time	Determine current disruption onset time with t_res<30s, using two near- equatorial (within 2Re of magnetic equator) probes, near the anticipated current disruption site (~8-10 Re). Current disruption onset is determined by remote sensing the expansion of the heated plasma via superthermal ion flux measurements at probes within +-2Re of the measured substorm meridian and the anticipated altitude of the current disruption.	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 1: Time History of auroral breakup, current disruption (CD), and lobe flux dissipation at the substorm meridian	N/A
UCB	VA	WBS 1.2	S-3	1-Drivers	Reconnection Onset Time	Determine reconnection onset time with t_res<30s, using two near- equatorial (within 5Re of magnetic equator) probes, bracketing the anticipated reconnection site (20-25Re). Reconnection onset is determined by measuring the time of arrival of superthermal ions and electrons from the reconnection site, within dY=+-2Re of the substorm meridian and within <10Re from the anticipated altitude of the reconnection site. In addition, dawn-dusk DC electric field measurements and energetic ion finite gyroradius-technique determination of the velocity of the expanding plasma sheet boundary are required to determine the actual distance to the reconnection site (with dE/E=10% or 1mV/m accuracy whichever is larger, and dV/V=10% or dV=50km/s whichever is larger, respectively).	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 1: Time History of auroral breakup, current disruption (CD), and lobe flux dissipation at the substorm meridian	N/A
UCB	VA	WBS 1.2	S-4	1-Drivers	Simultaneous Observations	Obtain simultaneous observations of: substorm onset and meridian (ground), current disruption onset and reconnection onset for >10 substorms in the prime observation season (September-April). Given an average 3.75hr substorm recurrence in the target tail season, a 2Re width of the substorm meridian, a 1Re requirement on probe proximity to the substorm meridian (of width 2Re) and a 20Re width of the tail in which substorms can occur, this translates to a yield of 1 useful substorm event per 18.75hrs of probe alignments, i.e, a requirement of >188hrs of four-probe alignments within dY=+-2Re.	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 1: Time History of auroral breakup, current disruption (CD), and lobe flux dissipation at the substorm meridian	
UCB	VA	WBS 1.2	S-5	1-Drivers	lon and Electron Fluxes	Use the SST to measure near the ecliptic plane (within +-30degrees) the superthermal ion and electron fluxes (30-100keV) at t_res<30s.	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 1: Time History of auroral breakup, current disruption (CD), and lobe flux dissipation at the substorm meridian	N/A
UCB	VA	WBS 1.2	S-6	1-Drivers	Earthward Ion Flows	Track between probes the earthward ion flows (400km/s) from the reconnection site and the tailward moving rarefaction wave in the magnetic field, and ion plasma pressure (motion at 1600km/s) with sufficient precision (dV/V=10% or V within 50km/s whichever is larger, dB/B=10%, or B within 1nT whichever is larger, dP/P=10%, or P within 0.1nPa whichever is larger) to ascertain macroscale coupling between current disruption and reconnection site during >10 substorm onsets (>188hrs of four-probes aligned within dY of +-2Re).	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 2: Macroscale interaction between current disruption (CD), and near-Earth reconnection (RX)	N/A
UCB	VA	WBS 1.2	S-7	1-Drivers	Pressure Gradients	Determine the radial and cross-current-sheet pressure gradients(anticipated dP/dR, dP/dZ ~0.1nPa/Re) and ion flow vorticity/deceleration with probe measurement accuracy of 50km/s/Re, over typical inter-probe conjunctions in dR and dZ of 1Re, each during >10 onsets. The convective component of the ion flow is determined at 8-10Re by measurements of the 2D electric field (spin-plane to within +- 30degrees of ecliptic, with dE/E=10% or 1mV/m accuracy whichever is larger) assuming the plasma approximation at t_res<30s.	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 2: Macroscale interaction between current disruption (CD), and near-Earth reconnection (RX)	N/A
UCB	VA	WBS 1.2	S-8	1-Drivers	Cross-Current-Sheet Change	Determine the cross-current-sheet current change near the current disruption region (+-2Re of meridian, +-2Re of measured current disruption region) at substorm onset from a pair of Z-separated probes using the planar current sheet approximation with relative (interprobe) resolution and interorbit (~12hrs) stability of 0.2nT.	Primary Science Objective: Onset and evolution of substorm instability. Science Goal 2: Coupling between the substorm current and the auroral ionosphere	N/A

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
UCB	VA	WBS 1.2	S-9	1-Drivers	MHD	Obtain measurements of the Magneto-Hydrodynamic (MHD) and non-	Primary Science Objective: Onset and evolution of substorm instability.	. N/A
						MHD parts of the plasma flow through comparisons of ion flow from the	Science Goal 2: Coupling between the substorm current and the	
						ESA detector and ExB flow from the electric field instrument, at the	auroral ionosphere	
						probes near the current disruption region, with t_res<10s.		
UCB	VA	WBS 1.2	S-10	1-Drivers	Cross-tail pairs	Determine the presence, amplitude, and wavelength of field-line	Primary Science Objective: Onset and evolution of substorm instability.	. N/A
						resonances, Kelvin-Helmholz waves and ballooning waves on cross-tail	Science Goal 3: Cross-scale energy coupling between macroscale	
						pairs (dY=0.5-10Re) with t_res<10s measurements of B, P and V for	substorm instability and local processes at the current disruption site.	
						>10 substorm onsets.		
UCB	VA	WBS 1.2	S-11	1-Drivers	Cross-field current	Determine the presence of cross-field current instabilities (1-60Hz),	Primary Science Objective: Onset and evolution of substorm instability.	. N/A
					instabilities	whistlers and other high frequency modes (up to 600Hz) in 3D electric	Science Goal 3: Cross-scale energy coupling between macroscale	
						and magnetic field data on two individual probes near the current	substorm instability and local processes at the current disruption site.	
						disruption region for >10 substorm events.		
UCB	VA	WBS 1.2	S-12	1-Drivers	Radiation Belt Science	Goal: Determine the source and acceleration mechanism of storm-time	Secondary Science Objective: At radiation belts, production of storm-	N/A
						MeV electrons (at radiation belts)	time MeV electrons.	
UCB	VA	WBS 1.2	S-13	1-Drivers	Dayside Science	Goal: Determine the nature, extent and cause of magnetopause	Tertiary Science Objective: At dayside, control of solar wind-	N/A
						transient events (on dayside)	magnetosphere coupling by upstream processes.	
Scienc	e Data Requir	rements		<u> </u>				
UCB	VA	WBS 1.2	S-14	2-Ground	Science Data	The THEMIS Principal Investigator shall be responsible for initial		N/A
				Segment	Management	analysis of the data, its subsequent delivery to an appropriate data		
						repository, the publication of scientific findings, and communication of		
						results to the public.		
UCB	VA	WBS 1.2	S-15	2-Ground	Science Data	The THEMIS Principal Investigator shall be responsible for collecting		N/A
				Segment	Validation	housekeeping, and ancillary information necessary to validate and		
						calibrate the scientific data prior to depositing it in a NASA approved		
						data repository.		
UCB	VA	WBS 1.2	S-16	2-Ground	Data Dissemination	The time required to complete this process shall be the minimum		N/A
				Segment	Time	necessary to provide accurate scientific data to the science community		
						and the general public.		
UCB	VA	WBS 1.2	S-17	2-Ground	Data Dissemination	The THEMIS science data base shall be made available to the science	NASA Requirement.	N/A
				Segment	Restrictions	community without restrictions or proprietary data rights of any kind.		
								_
UCB	VA	WBS 1.2	S-18	2-Ground	Science Data Analysis	Science analysis software shall be developed by the PI team and		N/A
				Segment	Software	integrated into the NASA approved data repository.		_
UCB	VA	WBS 1.2	S-19	2-Ground	Equal-Access	The PI team and the science community shall have equal on-line		N/A
				Segment		access to this software.		
UCB	VA	WBS 1.2	S-20	2-Ground	Data Management Plar	The THEMIS Project shall develop a data management plan to address		N/A
				Segment		the total activity associated with the flow of science data, from		
						acquisition, through processing, data product generation and validation,		
						to archiving and preservation. The data management plan shall be		
						delivered no later than the THEMIS Critical Design Review		

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Program	nmatic Require	ements (P-#)	1		1			
UCB	PRH	WBS 1.1	P-1	1-Drivers	Cost Constrained	The THEMIS mission shall be cost capped per Program-Level Requirements (Level1)	Program Requirement - Single Cost Cap for the Mission	N/A
UCB	PRH	WBS 1.1	P-2	1-Drivers	Schedule	THEMIS shall be launched no later than March 2007	Program Requirement - Schedule Cost Cap.	N/A
Reliabili	ty and Quality A	ssurance - Electric	cal					
UCB	RJ	WBS 1.1	P-3	1-Drivers	MIDEX Program Assurance	The implementation of Program Assurance shall follow the the Performance Assurance and Implementation Plan (PAIP), which shall be compliant with GSFC-410-MIDEX-002 Rev E 6/25/02 standards	Program Requirement.	N/A
UCB	RJ	WBS 1.1	P-4	1-Drivers	Parts Selection (Grade)	GSFC 311-INST-001 Grade 3 parts shall be used with selective up- screening to Grade 2 for key items in critical sub-systems	Program Requirement.	P-3
UCB	RJ	WBS 1.1	P-5	1-Drivers	Part Derating	Parts shall be derated to GSFC PPL-22, Appendix B, or Mil-STD-975 H Appendix A standards	Program Requirement	P-3
UCB	RJ	WBS 1.1	P-6	1-Drivers	Workmanship	THEMIS workmanship standards shall be compliant with the PAIP. Solder - NASA STD-8739.3; Cable, Harness and Wiring Interconnects - NASA STD-8739.2; Conformal Coating and Staking - NASA STD- 8739.1; Printed Wiring Board Design - NHB 5300.4 (3K) or NASA STD- S-312-003 Rev B.	Program Requirement. Addresses MIDEX SR&QA requirement to invoke hi-reliability workmanship standards. Should reference workmanship standard documents here.	P-3
UCB	RJ	WBS 1.1	P-7	1-Drivers	Quality System	The THEMIS quality system shall be based on ANSI/ASQ Q9001-1994	Program Requirement	P-3
Reliabili	ty and Quality A	ssurance - Mecha	nical					
UCB	RJ	WBS 1.1	P-8	1-Drivers	Mil or NASA Standards	All mechanical components shall be designed to Mil or NASA Standards when applicable	Best Practice	N/A
UCB	RJ	WBS 1.1	P-9	1-Drivers	Units	All Units (SI, English) shall be clearly documented.	There will be different units used by different organizations, due to the status of tools currently available.	P-8
UCB	RJ	WBS 1.1	P-10	1-Drivers	Design Loads	All mechanical components shall be designed using the limit loads specified in the Verification Plan and Environmental Test Requirements Document	GEVS-SE will be used to develop Test Requirements Document	P-8
UCB	RJ	WBS 1.1	P-11	1-Drivers	Safety Factors	All nonpressurized metallic mechanical components shall be designed to meet NASA-STD-5001. All pressurized components shall be designed to meet MIL-STD-1522 and EWR 127-1.	Cover uncertainty in design, analysis and materials	P-8
UCB	RJ	WBS 1.1	P-12	1-Drivers	NDE	All weldments, bonded joints and composite materials shall be 100% inspected per the inspection criteria in: Mil-STD-2219 (TBR), MSFC- SPEC-522	Detect structural defects and minimize the risk of fracture	P-8
UCB	RJ	WBS 1.1	P-13	1-Drivers	Stress Corrosion Cracking	Materials shall be selected from Table 1 of MSFC-STD-3029 for sensitivity to stress-corrosion cracking	Minimizes fracture risk	P-8
UCB	RJ	WBS 1.1	P-14	1-Drivers	Composites	All composite structures shall be proof tested to 1.25 X limit loads	GEVS-SE requirement	P-8
UCB	RJ	WBS 1.1	P-15	1-Drivers	Dissimilar Metals	Dissimilar metals in contact in the presence of electrolyte shall be avoided where possible. If not possible, interfaces shall be protected from calvanic corresion by the use of appropriate coatings	Avoid corrosion and possible contamination of instruments (particularly optics)	P-8
Reliabili	ty and Quality A	ssurance - Softwa	re			Inom garvanic contraion by the use of appropriate coatings.		
UCB	RJ	WBS 1.1	P-16	1-Drivers	Flight Software Assurance	All Flight Software shall meet the assurance requirements for IV&V, per TBD. Required for the following flight subsystems: IDPU FSW (UCB); Bus Avionics Unit FSW (Hammers): Mission Operations Software	Program Requirement.	N/A
Safety	1	I		I				1
UCB	RJ	WBS 1.1	P-17	1-Drivers	Launch Site Safety	The THEMIS Project shall meet all safety requirements	Program Requirement.	N/A
UCB	RJ	WBS 1.1	P-18	1-Drivers	Launch Site Safety	The THEMIS Project shall meet requirements of EWR 127-1	EWR 127-1 provides the overriding design and test requirements for payloads using the Eastern Range	P-17
UCB	RJ	WBS 1.1	P-19	1-Drivers	Launch Vehicle Safety	The THEMIS Project shall meet requirements of the launch vehicle contractor	The Launch Vehicle contractor, at their discretion impose additional safety requirements	P-17
UCB	RJ	WBS 1.1	P-20	1-Drivers	NASA Safety	The THEMIS Project shall meet requirements of KHB 1710.2	Payloads processed through NASA facilities must meet the requirements of KHB 1710.2	P-17
Risk and	d Anomaly Repo	orting						
UCB	PRH	WBS 1.1	P-21	1-Drivers	Anomaly Tracking and Reporting	UCB shall manage and track to closure Problem/Failure Reports (PFRs) from all probe bus, ground system and instrument activities	Program Decision on Anomaly Tracking Process	N/A
UCB	PRH	WBS 1.1	P-22	1-Drivers	Risk Tracking and Reporting	Risk shall be tracked in project-level database. Top 10 risks shall be listed in monthly status reports to the Explorers office.	Program Decision on Risk Tracking Process. Risk Management responsibilities include: Resources; Schedules and Milestones; Risk Identification; Risk analysis, assessment and mitigation; Criteria for categorizing and ranking to probability and consequences; Role of decision making, formal reviews, status reporting; Documenting risk products and actions.	N/A

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Mission Lifetime	n Requirement and Radiation	s (M-#)						
UCB	ERT	WBS-1.3	M-1	2- Space/Ground Segment	Mission Lifetime	The THEMIS operational system shall be designed for at least a two- year lifetime.	Sufficient to achieve baseline science requirements - allows for two full tail seasons, ensuring conjunction time >188 hrs per year (dY first year, dZ second year).	S-4
UCB	ERT	WBS-1.3	M-2	2-Space Segment	Orbital Debris Requirement	THEMIS shall meet the NASA orbital debris guidelines of re-entry in NASA Safety Standard (NSS) 1740.14	Required per NASA guidelines (re-entry in <25 yrs and debris footprints <8 m2)	N/A
UCB	ERT	WBS-1.3	M-3	2-Space Segment	Total Dose Radiation	THEMIS shall be designed for a total dose environment of 33 krad/year (66 krad total) (TBR)	Survival in predicted radiation environment - based on dose/depth curve calculations indicating 33 krad TID behind 5mm Al for a 1 year mission (includes a RDM of 2 for uncertainty of model and variability of environment).	M-1
UCB	ERT	WBS-1.3	M-4	2-Space Segment	SEE Radiation	THEMIS shall be Single Event Effect (SEE) tolerant and immune to destructive latch-up.	Operability in radiation environment. Protection occurs on several levels: Parts, Local Circuit Protection, Scrubbing, Reset.	M-1
Fault To	lerance							
UCB	ERT	WBS-1.3	M-5	2- Space/Ground Segment	Fault Tolerance	To the maximum extent possible, THEMIS shall be designed to be single fault tolerant and still meet minimum mission success criteria	Project guidelines direct the design of the most robust and fault tolerant system within the constraints of allocated resources. Reflects accepted design practice commensurate with mission scope; use of redundancy; and probe system design promoting graceful degradation	N/A
							in the event of an anomaly or failure.	
UCB	ERT	WBS-1.3	M-6	2-Space Segment	Probe Redundancy	THEMIS Probes 3 or 4 shall be capable of replacing any other probe during the minimum mission	Allows for failure of one probe and still meet minimum mission success	M-5
UCB	ERT	WBS-1.3	M-7	2-Space Segment	Probe Safe-Hold Power	Each Probe shall have a viable safe-hold mode after carrier separation (i.e. power-positive, thermally safe, able to communicate with ground throughout orbit).	Allows for anomaly investigation and correction from the ground. Safe- hold mode will be fully defined early in the design process.	N/A
UCB	ERT	WBS-1.3	M-8	2-Space Segment	Failure Detection and Correction	THEMIS shall implement Failure Detection and Correction (FDC)	Allows for autonomy in detecting and correcting faults.	N/A
Mission	Design							
UCB	ERT	WBS-1.3	M-9	2-Space Segment	Space Mission Design	THEMIS shall perform science observations with identical probes in multiple period, near-equatorial orbits (five probes required for baseline science, four probes required for minimum)	Supports science requirements - multiple spacecraft allows probes to simultaneously measure substorm signatures over long distances along the magnetotail.	S-2
UCB	ERT	WBS-1.3	M-10	2-Space Segment	Unique ID	Each THEMIS Probe shall have a unique ID that can not be changed or orbit	All probes share the same frequency. Required to contact one probe at a time	t M-9
UCB	ERT	WBS-1.3	M-11	2- Space/Ground Segment	Ground Based Observations	The THEMIS probe conjunctions shall be coordinated with ground- based observations during prime geotail season	Fundamental part of science mission – space-based observations coordinated with ground-based observations to aid in determining the onset of substorms	S-1
UCB	ERT	WBS-1.3	M-12	2- Space/Ground Segment	Orbital Plan	The selected orbital plan shall achieve greater than 188 hours of four- probe conjuctions during the prime tail observation season (September to April)	Number of hours of conjuctions required by Level 1 Science.	S-4
UCB	ERT	WBS-1.3	M-13	2- Launch/Space Segment	Initial Injection Altitude	THEMIS Probes shall be launched into a transfer orbit with the following characteristics: apogee 12 +/- 0.38 Re; perigee 1.1 +/- 0.5Re; inclination 9 +/- 0.5°; RAAN of 330 +/- 7 deg; and argument of perigee of 0 +/-5 deg (all parameters TBR)	This is near the final science orbit of the 3 inner probes, and thus minimizes the fuel required to place all probes into their final desired science orbits	M-12
UCB	ERT	WBS-1.3	M-14	2-Space Segment	Probe Science Altitudes	The THEMIS probes shall ascend to the following approximate science orbits prior to the first-year tail observation season: 1.5x30.9 Re, 7deg inclination (P1), 1.2x19.8 Re, 7deg inclination (P2); 1.2x12.1 Re, 9deg inclination (P3, P4); and 1.1x9.8 Re, 4deg inclination (P5). P5 raised to 1.1x13.2 Re orbit after tail season.	Approximate orbital elements, sufficient to design system. Supports science requirements and ops concept - choice of periods results in multi-point conjunctions at apogee, allowing probes to simultaneously measure substorm signatures over long distances along the magnetotail, while simplifying ground communication scheduling.	M-12
UCB	ERT	WBS-1.3	M-15	2-Space Segment	Conjuction Optimization	Upon ascent, and twice during the first- and second-year tail observation seasons, the orbital phase of P1 and P2 shall be adjusted to optimize the amount and quality of conjuctions.	Ensures science requirements are met.	M-12
UCB	ERT	WBS-1.3	M-16	2-Space Segment	Eclipse Constraint	The selected date of tail observation season shall satisfy the requirement for eclipse duration (<180 minutes), conjuctions with GBO's and aggregate amount of conjunction hours.	System design decision selected to constrain orbit trades and optimization in consideration of probe power and thermal constraints.	M-12
UCB	ERT	WBS-1.3	M-17	2-Space Segment	De-Orbit Constraint	All probes shall perform end-of-mission maneuvers to place themselves in orbits that ensure re-entry within 25 years.	Required by NASA orbital debris guidelines	M-2
UCB	ERT	WBS-1.3	M-18	2-Space Segment	Minimal Fuel	THEMIS shall require the minimal fuel possible to place probes in desired orbits	Accomodates small probe design consistent with total launch capability. Drives manuever planning, axial thrusting, no re-orientation of spin axis, etc.	M-14

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Resour	ce Budgets							
UCB	ERT	WBS-1.3	M-19	2-Space Segment	Delta V Allocation	THEMIS maneuvers shall be optimized to not exceed a Delta-V of 566m/s +15% contingency (TBR) (for limiting case P1)	Design decision based on current best estimate of Delta-V plus some contingency for design margin. Fixing number allows sizing of propellant tanks.	M-22
UCB	ERT	WBS-1.3	M-20	2-Space Segment	Propellant margin at launch	All THEMIS Probes shall have (TBD) propellant margin at launch	Allows for operational errors, possible anomalies after launch. Acceptable propellant margin at launch will be considered in trade-off when sizing tanks considering significant Delta-V contingency and acceptable dry mass margin.	M-22
UCB	ERT	WBS-1.3	M-21	2-Space	Dry Mass Allocation	No THEMIS Probe shall exceed a dry mass of 70.8kg	Rationale: 62.0 kg CBE + 14.4% contingency	M-22
UCB	ERT	WBS-1.3	M-22	2-Space Segment	Design Mass	Each THEMIS Probe shall be designed to accommodate a 82kg (TBR) dry mass, Delta-V of 650m/s (TBR), and a (TBD) propellant margin at launch	System design allocation accommodates dry mass 62.0kg CBE + 14.4% contingency (not-to-exceed 70.8kg) plus 20.0% Program Margin; and delta-V 566m/s + 15% contingency (not-to-exceed 650m/s) plus 15.0% propellant margin at launch. Sizes propellant tanks.	M-29
UCB	ERT	WBS-1.3	M-23	2-Space Segment	Power Allocation	No THEMIS Probe shall exceed an on-orbit power draw of 29.24 W	Rationale: 24.5 W CBE + 19.3% contingency	M-24
UCB	ERT	WBS-1.3	M-24	2-Space Segment	Design On-orbit Average Power	The Probe power system shall be designed to accommodate an EOL on-orbit average power of 41.5W.	Rationale: System design allocation is 24.5 W CBE + 19.3% contingency (not-to-exceed 29.24W) plus 41.9% Program Margin. Sizes solar array area and battery capacity.	M-29
UCB	ERT	WBS-1.3	M-25	2-Space Segment	Design Eclipse, Peak Power	Each Probe shall be designed to achieve electrical energy balance over an orbit assuming a 30 minute transmitter power on time and a 180 minute eclipse.	Electrical power system must be sized to accommodate peak and on- orbit power loads (eclipse, downlink, etc). Defines eclipse and transmitter on time.	M-1
UCB	ERT	WBS-1.3	M-26	2-Space Segment	Data Volume On-board	Each THEMIS Probe shall be designed to accomodate 750 Mbits/orbit (uncompressed) Instrument science and housekeeping data and 87 Mbits/orbit Probe Bus housekeeping data.	Reflects expected instrument data rate collected over an orbit for all mission modes (survey and burst); and expected probe data rate (1kpbs) collected for P3,4,5 (1 day orbit). Drives need to reduce probe data rate for P1 (4 day orbit) and P2 (2 day orbit).	M-50
UCB	ERT	WBS-1.3	M-27	2-Space Segment	Data Storage	THEMIS shall be capable of storing 1 orbit + 1 days worth of Instrument and Probe Bus data.	Provides contingency if ground station pass is missed.	M-29
UCB	ERT	WBS-1.3	M-28	2-Space Segment	Thermal	THEMIS shall survive and perform as designed under worst-case thermal conditions	Ensures thermal survivability. Drives thermal design to meet component temperature limits.	M-1
UCB	ERT	WBS-1.3	M-29	2-Space Segment	Program Margin	All resource budgets (mass, power, data) shall show sufficient positive margin at each project milestone	Sufficient margins are evaluated at each major review and addressed in Risk Mitigation Plan. Mass and Power resources are considered 'high' risk (triggering risk mitigation plan) if they don't meet the margin schedule.	N/A
Contam	ination	1						1
UCB	ERT	WBS-1.3	M-30	2-Space Segment	SCM Sensitivity	AC magnetic noise radiated by the Probe and the other instruments shall not exceed 10pT/Hz^1/2 @ 10Hz and 1pT/Hz^1/2 at 1kHz at the SCM sensor	Sensitivity of SCM	N/A
UCB	ERT	WBS-1.3	M-31	2-Space Segment	FGM Sensitivity	DC magnetic noise radiated by the Probe and the other instruments shall not exceed 1nT at the FGM sensor	Sensitivity of FGM	N/A
UCB	ERT	WBS-1.3	M-32	2-Space Segment	Magnetic Cleanliness Document	All THEMIS elements shall comply with the Magnetics Cleanliness standard described in the THEMIS Magnetics Cleanliness Plan.	Adherence to document ensures residual and induced magnetic fields does not corrupt mission science	M-30
UCB	ERT	WBS-1.3	M-33	2-Space Segment	EFI Sensitivity	Quasi-DC voltages produced by the Probe and the other instruments shall not affect the quality of the EFI measurement	Sensitivity of EFI	N/A
UCB	ERT	WBS-1.3	M-34	2-Space Segment	Electrostatic Cleanliness	All THEMIS elements (Instruments, Probe) shall comply with the THEMIS Electrostatic Cleanliness (ESC) Plan	Adherence to document mitigates potential of contaminating quasi-DC voltages affecting quality of EFI measurement.	M-33
UCB	ERT	WBS-1.3	M-35	2-Space Segment	ESA Molecular Contamination	The molecular contamination of the ESA sensor shall be less than 0.01 uo/cm^2 (TBR). Particulate level TBD.	ESA Contamination	N/A
UCB	ERT	WBS-1.3	M-36	2-Space Segment	SST Molecular Contamination	The molecular contamination of the SST sensor shall be less than 0.1 un/cm ² (TBR) Particulate level TBD	SST Contamination	N/A
UCB	ERT	WBS-1.3	M-37	2-Space Segment	Contamination Control Plan	All THEMIS Elements shall comply with the THEMIS Contamination Control Plan	Adherence to document ensures contamination of sensitive portions of the Probes by condensables and particulates does not prevent the ESA and SST from meeting its performance requirements	M-35
Interfac	e Requiremen	ts						

Ora.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
UCB	ERT	WBS-1.3	M-38	2-Space	Electrical System	All hardware shall meet the general electrical system requirements	Document provides electrical design guidelines to alleviate interface	N/A
000				Segment	Specification (TBR)	documented in the THEMIS Electrical System Specification	problems during system integration	
	EDT	W/DC 1 2	M 20	2			Adherence to ICDs ensures electrical mechanical thermal etc.	NI/A
UCB	ERI	VVD3-1.3	101-39	2- Crease (Orecord /	ICD development	All THEIMIS Elements shall be compatible per their ICDs	interference to ICDS ensures electrical, mechanical, thermal, etc.	IN/A
T D .	l			Space/Ground/			interface requirements are met	
Test Re	quirements	luma i a	1	1-	I= -			lassa
UCB	ERT	WBS-1.3	M-40	2-	Performance	All THEMIS components shall verify mission performance requirements	Supports mission science - verifies performance is as expected prior to	N/A
				Space/Ground	Verification	are met per the Verification Plan and Environmental Test Specification.	launch.	
UCB	ERT	WBS-1.3	M-41	2-	Environments	All THEMIS components shall survive and function prior, during and	Adherence to document ensures all elements are subjected to	M-1
				Space/Ground		after exposure to the launch and space environments described in the	expected launch and space environments as part of a comprehensive	
				Segment		Verification Plan and Environmental Test Specification.	test program	
UCB	ERT	WBS-1.3	M-42	2-Space	Integration and Testing	All THEMIS components shall be sufficiently testable during all levels of	Ensures system function and performance. Drives subsystem design	M-41
				Segment		integration and test.	to include integrated test capabililiv.	
Launch	Vechicle	1	1	ooginon				1
	EDT	W/DS 1 2	M 42	2	Launah Vahiala	The THEMIS Broke Carrier Accombly (5 Eucled Brokes plus Broke	Provides sufficient performance capability and reliability to place	NI/A
UCB	ERI	VVD3-1.3	IVI-43	Z-	Laurich verlicie	Carrier) shall be connectible with a Dalta II 2005 40	Flowides sufficient performance capability and reliability to place	IN/A
	FDT	14/00 4 0		Launch/Space	La sala Marada	Carrier) shall be compatible with a Deita II 2925-10	THEMIS Probes into the desired initial parking orbit	
OCB	ERI	WBS-1.3	M-44	2-	Launch Window	within the schedule cap (March 2007), the THEMIS launch date shall	System is sized to allow launch any day of the year. A launch date of	
				Launch/Space		not be restricted	August 2006 plus or minus 2 months is preferred in accordance with	
				Segment			schedule and minimum time to prime observation season. Launch	
							period would allow time to commission the probes prior to the	
							operational period starting in December 2006. The launch window is	
UCB	ERT	WBS-1.3	M-45	2-	Launch Vehicle Lift	The THEMIS Probe Carrier Assembly (5 Fueled Probes plus Probe	Preliminary estimate of Delta 2925-10 lift capability	M-43
				Launch/Space	Canability	Carrier) shall not exceed 807kg		
LICB	EDT	W/BS 2.0	M 46	2 Space		The fundamental frequency of the Probe Carrier Assembly (Probe	Delta II requirement	M 43
UCB	ERI	VVD3-2.0	WI-40	2-Space		Contract of England Database in Javanah configuration shall be proper them	Dena in requirement	101-43
				Segment	Frequency	Carrier + 5 Fueled Probes) in launch configuration shall be greater than		
						15 HZ IN lateral and 35 HZ IN axial.		
UCB	ERT	WBS-1.3	M-47	2-Space	PCA CG Location	The CG location of the Probe Carrier Assembly (Probe Carrier + 5	Delta II requirement. Affects spin balance, bending moment, and	M-43
				Segment		Fueled Probes) shall be within TBD of the PCA centerline.	dynamic balance	
Ground	Station							
UCB	ERT	WBS-1.3	M-48	2-	Ground Station	THEMIS shall be compatible with BGS, USN, TDRSS, and NASA/GN	Ensures data downlink requirements during operations phase are met	N/A
				Ground/Space	Compatibility		with dedicated ground station (BGS), secondary (USN) and back-up	
				Segment			(NASA/GN). TDRSS provides continuous coverage as needed during	
							launch, early operations phase, maneuvers and potential anomalous	
UCB	ERT	WBS-1.3	M-49	2-	Frequency and Format	THEMIS shall be S-Band, CCSDS-compatible and COP-1 compatible	Provides a standard to simplify back-up by other stations	N/A
			-	Ground/Space		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
UCB	FRT	WBS-1.3	M-50	2-	Data Volume	THEMIS Probes shall be canable of downlinking all stored data for each	Reflects expected data volume	M-56
000	Eitti	1100 1.0		Cround/Space	Downlinked	Probe: 325 Mbits/orbit science and instrument HK data (assumes x2		
				Sogmont	Downiinked	a robe. 525 Mbits/orbit Science and instrument rin data (assumes x2		
	FDT	14/00 4 0	14.54	Segment	Decision (Decision)			117
OCB	ERI	WBS-1.3	M-51	2-	Regularity of Downlink	THEMIS Probes shall be capable of downlinking minimum	Operational Goal. Sate-guards against anomaly going unnoticed.	M-7
				Ground/Space		housekeeping data from all probes at least once a day.		
UCB	ERT	WBS-1.3	M-52	2-	Transmitter on time	THEMIS Probes shall be capable of downlinking all data within 30	Reflects power generation capabilities of body mounted solar arrays.	M-25
				Ground/Space		minutes per day per probe (maximum transmitter on time).	Affects thermal and required data rates.	
UCB	ERT	WBS-1.3	M-53	2-	Receive Commands at	THEMIS Probes shall be capable of receiving ground commands to	Desire to communicate with probe at anytime (no black-out)	M-7
				Ground/Space	Maximum Altitude	maximum altitude (apogee of 30RE)		
UCB	ERT	WBS-1.3	M-54	2-	Provide Telemetry to	THEMIS Probes shall provide housekeeping telemetry downlink	Desire to know state of probe at any time (no black-out)	M-7
				Ground/Space	Maximum Altitude	capability from maximum altitude (appage of 30RE)		
LICB	EDT	W/BS 1 3	M 55	2	I Inlink data rate		Baseline unlink rate	M 56
000		VVDO-1.5	W-55	Ground/Space	opinit data rate	data rate of 1 kbns		W-50
	EDT		MEG	o Olouliu/Opace	Link Morgin	The S Dand unlink and downlink shall have a link margin of $> 2dD$ at all	Ensures a stable and reliable DE communications with Design driven	M 20
UCB	ERI	VVDS-1.5	101-30	2-		The S-band uplink and downlink shall have a link margin of \geq 50B at all solutions the order of the set of t	Ensures a stable and reliable RF communications path. Design unven	IVI-29
				Ground/Space		points in the orbit through all mission phases	by limiting cases. Drives need for variable downlink rates	
UCB	ERT	WBS-1.3	M-57	2-	Bit Error Rate (BER)	The THEMIS link analysis shall assume a 10E-6 BER downlink and 10E	Downlink BER minimizes error rate of data recovered after	M-56
				Ground/Space		7 BER uplink	transmission and recovery at ground station. Uplink BER (along with	
UCB	ERT	WBS-1.3	M-58	2-Ground	Orbital Knowledge	Probe orbits shall be known to an accuracy of 10km at Perigee and	Adequate for ground station antenna pointing. Meets Science	N/A
1				Segment		100km at Apogee.	Requirement.	
UCB	ERT	WBS-1.3	M-59	2-	Probe Health and	The THEMIS Ground System shall monitor and take appropriate action		N/A
1				Ground/Space	Safety	to maintain the health and safety of the Probes		
UCB	FRT	WBS-1.3	M-60	2-	Orbit & Attitude	The THEMIS Ground System shall calculate and propagate all orbit and	Design decision to simplify Probe Bus design, given that the spinning	N/A
200	1			- Ground/Space	Management	attitude parameters necessary for orbit maintenance and attitude	probes are highly stable once fully deployed and spinning	
1				Segment	managomont	control of each Drohe		
L	1	1	1	Segment				1

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Instrun	ient - General	(IN-#)		2 Element	Mission Lifetime	The Instrument Dayland shall be designed for at least a two year	Eleve deven	NA 4
UCB	ERI	VVB3-1.3	IIN-I	3-Element		lifetime.	riow-down	101-1
UCB	ERT	WBS-1.3	IN-2	3-Element	Total Dose Radiation	The Instrument Payload shall be designed for a total dose environment of 33 krad/year (66 krad total) (TBR)	Flow-down	M-3
UCB	ERT	WBS-1.3	IN-3	3-Element	SEE Radiation	The Instrument Payload shall be Single Event Effect (SEE) tolerant and immune to destructive latch-up.	Flow-down	M-4
UCB	ERT	WBS-1.3	IN-4	3-Element	Safe-hold Mode	Each Instrument Payload shall have an autonomous safe state after carrier separation.	Flow-down	M-7
UCB	ERT	WBS-1.3	IN-5	3-Element	Failure Detection and Correction	The Instrument Payload shall implement Failure Detection and Correction (FDC)	Flow-down	M-8
UCB	ERT	WBS-1.3	IN-6	3-Element	System Mass Budget	The Instrument Payload shall not exceed a mass of 23.6 kg.	Ensures limiting mass constraint (deltaV to place probes in required orbits) is met with system margin. Not-to-exceed is CBE of 21kg with 12.8% contingency.	M-21
UCB	ERT	WBS-1.3	IN-7	3-Element	Allocated Mass Budget	No component of the Instrument Payload shall exceed the allocated mass budget in Table M1	Reflects estimated mass plus contingency based on level of design fidelity.	IN-6
UCB	ERT	WBS-1.3	IN-8	3-Element	System Power Budget	The Instrument Payload shall require less than 14.7 W (on-orbit average)	Ensures limiting power constraint (probe power generation and storage capability at mission end-of-life) is met with system margin. Not-to- exceed is CBE of 12.1W with 21.6% contingency.	M-23
UCB	ERT	WBS-1.3	IN-9	3-Element	Allocated Power Budget	No component of the Instrument Payload shall exceed the allocated power budget in Table P1	Reflects estimated power plus contingency based on level of design fidelity.	IN-8
UCB	ERT	WBS-1.3	IN-10	3-Element	Allocated Data Budget	The Instrument Payload shall not exceed the allocated data budget of 750Mbits/orbit (uncompressed)	Sufficient to achieve baseline science objectives	M-26
UCB	ERT	WBS-1.3	IN-11	2- Ground/Space	Uplink data rate	The Instrument Payload shall be compatible with an uplink data rate of 1 kbps	Baseline uplink rate	M-55
UCB	ERT	WBS-1.3	IN-12	3-Element	Data Storage	The Instrument Payload shall be capable of storing 1 orbit + 1 days worth of Instrument Science and housekeeping data.	Flow-down	M-27
UCB	ERT	WBS-1.3	IN-13	3-Element	Survival Temperature	The Instrument Payload shall survive the temperature ranges provided in Table XX in the ICD	Provides component limits for Probe thermal design	M-28
UCB	ERT	WBS-1.3	IN-14	3-Element	Operating Temperature	The Instrument Payload shall perform as designed within the temperature ranges provided in Table XX in the ICD	Provides component limits for Probe thermal design	M-28
UCB	ERT	WBS-1.3	IN-15	3-Element	Cold Start	The Instrument Payload shall be able to cold start at TBD	Provides component limits for Probe thermal design	M-28
UCB	ERT	WBS-1.3	IN-16	3-Element	Magnetic Cleanliness Document	All Instrument Payload shall comply with the Magnetics Cleanliness standard described in the THEMIS Magnetics Cleanliness Plan.	Flow-down	M-32
UCB	ERT	WBS-1.3	IN-17	3-Element	Electrostatic Cleanliness	The Instrument Payload shall comply with the THEMIS Electrostatic Cleanliness (ESC) Plan	Flow-down	M-34
UCB	ERT	WBS-1.3	IN-18	3-Element	Contamination Control Plan	The Instrument Payload shall comply with the THEMIS Contamination Control Plan	Flow-down	M-37
UCB	ERT	WBS-1.3	IN-19	3-Element	Electrical System Specification	All Instruments shall meet the general electrical system requirements documented in the THEMIS Electrical System Specification.	Flow-down	M-38
UCB	ERT	WBS-1.3	IN-20	3-Element	ICD	The Instrument Payload shall be compatible per the IDPU-Instrument ICD	Flow-down. Defines where interfaces are documented.	M-39
UCB	ERT	WBS-1.3	IN-21	3-Element	ICD	The Instrument Payload shall be compatible per the IDPU-Probe Bus ICD	Flow-down. Defines where interfaces are documented.	M-39
UCB	ERT	WBS-1.3	IN-22	3-Element	ICD	The Instrument Payload shall be compatible per the Instrument-Probe ICDs	Flow-down. Defines where interfaces are documented.	M-39
UCB	ERT	WBS-1.3	IN-23	3-Element	Performance Verification	The Instrument Payload shall verify performance requirements are met per the Verification Plan and Environmental Specification.	Flow-down	M-40
UCB	ERT	WBS-1.3	IN-24	3-Element	Fields Ground Support Equipment	The EFI, SCM, FGM, and DFB GSE shall support the intercalibration of the combined fields system.	Supports instrument performance verification	IN-23
UCB	ERT	WBS-1.3	IN-25	3-Element	Environments	The Instrument Payload shall survive and function prior, during and after exposure to the environments described in the Verification Plan and Environmental Specification.	Flow-down	M-41
UCB	ERT	WBS-1.3	IN-26	3-Element	Integration and Testing	All Instruments shall be testable during all levels of integration and test	Flow-down	M-42
UCB	ERT	WBS-1.3	IN-27	3-Element	Component Stiffness	All Instrument Payloadmstructural components shall be designed to have a minimum fundamental frequency of 75 Hz (goal) in the stowed configuration.	Design goal. Implemented to avoid coupling between component and Probe / Probe Carrier dynamics. Mass model will be required if below goal.	M-46

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Electric	- Field Instrum	nent (IN.EFI)						
EFI Sci	ence Requirem	ents						
UCB	JB	WBS-2.1.2	IN.EFI-1	4-Subsystem	Science Objective: 2D E-Field	The EFI shall determine the electric field in 2D (spin plane) with one spin period time resolution the times of onset at 8-10RE (<10sec	Determines the electric field associated with plasma convective motion at times of onset	S-7
UCB	JB	WBS-2.1.2	IN.EFI-2	4-Subsystem	Science Objective: Dawn/Dusk E-Field	The EFI shall determine the dawn/dusk electric field over one spin period at 18-30RE (<10sec required)	Determines distance to the reconnection site (along with SST measurements).	S-3
UCB	JB	WBS-2.1.2	IN.EFI-3	4-Subsystem	Science Objective: 3D E-Field	The EFI shall measure the 3D wave electric field in the frequency range 1-600Hz at the times of onset at 8-10RE.	Determines the electric component of waves at frequencies below the lower hybrid frequency through whistler branch during times of onset.	S-11
UCB	JB	WBS-2.1.3	IN.EFI-4	4-Subsystem	Science Objective: Radiation Belt	The EFI shall measure the electric components of the waves up to the electron cyclotron frequency	Waves may be responsible for the electron acceleration in the radiation belt	S-12
FELInst	rument Perform	nance Requireme	nts		radiation Deit			1
UCB	JB	WBS-2.1.2	IN.EFI-5	4-Subsystem	Time Resolution	The EFI shall measure the 2D (on the spin plane) DC E-field with a 10 second time resolution.	Time resolution required to meet Level 1 Science Requirements	IN.EFI-1
UCB	JB	WBS-2.1.2	IN.EFI-6	4-Subsystem	Frequency Range	The EFI shall measure the 3D AC E-field from 1- 4kHz.	1-6Hz for low-frequency modes, up to 4kHz for whistler branch (cyclon frequency)	IN.EFI-3
UCB	JB	WBS-2.1.2	IN.EFI-7	4-Subsystem	Spacecraft Potential	The EFI shall measure the Spacecraft Potential with a time resolution better than the spin rate (3 seconds).	Spin time resolution required for ESA to compute moments on-board. Probe potential measurement needed for quality EFI data on ground.	IN.ESA-1
UCB	JB	WBS-2.1.2	IN.EFI-8	4-Subsystem	DFT Spectra Range	The EFI DFT Spectra Range shall be 16Hz - 4kHz, with df/f~25%		IN.EFI-3
UCB	JB	WBS-2.1.2	IN.EFI-9	4-Subsystem	DC Resolution	The EFI shall measure the DC signals of amplitude up to 300mV/m with 16 bit digitization	Sufficient dynamic range and resolution to measure the spacecraft potential and E-Field.	IN.EFI-1
UCB	JB	WBS-2.1.2	IN.EFI-10	4-Subsystem	AC Resolution	The EFI shall measure the AC signals of amplitude up to 100mV/m with 16 bit digitization		IN.EFI-3
UCB	JB	WBS-2.1.2	IN.EFI-11	4-Subsystem	Noise Level	The EFI noise level shall be below 10^-4 mV/m/sqrt(Hz) at 4kHz [TBR].	Sets noise floor.	IN.EFI-4
UCB	JB	WBS-2.1.2	IN.EFI-12	4-Subsystem	High Frequency Log Power	The EFI HF RMS (Log power) measurement shall cover 100-500 kHz with a minimum time resolution of spin rate. (on-board triggers)	Provides on-board triggers to catch onsets simultaneously on all probes.	IN.DPU-15
UCB	JB	WBS-2.1.2	IN.EFI-13	4-Subsystem	Accuracy	The EFI shall achieve an accuracy better than 10% or 1mV/m in the SC XY components during times of onset.		IN.EFI-1
Electro	static Analyze	r (IN.ESA)						
ESA So	ience Requiren	nents						
UCB	cc	WBS-2.1.3	IN.ESA-1	4-Subsystem	Science Objective: Partial Moments	The ESA shall obtain partial moments of the 3D plasma electron and ion distributions with one spin period time resolution in the magnetotail plasma sheet (<10sec required)	Provides interprobe timing studies to help determine current disruption onset time	S-3
UCB	сс	WBS-2.1.3	IN.ESA-2	4-Subsystem	Science Objective: Velocity/Pressure	The ESA shall measure differences in velocity and ion pressure between probes in the magnetotail plasma sheet	Provides an estimate of the scale size of transport, the size and strength of flow vortices and the pressure gradient	S-7
UCB	CC	WBS-2.1.3	IN.ESA-3	4-Subsystem	Science Objective: Distributions	The ESA shall measure, at one spin resolution, ion and electron distributions that are associated with the current disruption process (<10sec required)	Identifies sources of free energy and evidence of acceleration processes	S-11
UCB	СС	WBS-2.1.3	IN.ESA-4	4-Subsystem	Science Objective: Dayside Science	The ESA shall be capable of measuring ion moments and differences of those moments in the magnetosheath and solar wind	Dayside Science	S-13
ESA Ins	strument Perfor	mance Requirem	ents					
UCB	СС	WBS-2.1.3	IN.ESA-5	4-Subsystem	Energy Range	The ESA shall measure ions and electrons over an energy range of 0.01-30 keV	Provides low part of energy range required for Level 1 Science Requirements.	IN.ESA-1
UCB	CC	WBS-2.1.3	IN.ESA-6	4-Subsystem	Energy Resolution	The ESA energy sampling resolution, dE/E, shall be better than 25% FWHM for ions and electrons	Resolution adequate for science.	IN.ESA-1
UCB	CC	WBS-2.1.3	IN.ESA-7	4-Subsystem	Energy Flux	The ESA shall be capable of measuring ion and electron energy flux of 10^4 to 10^9 keV/cm^2/s/Str/keV	Expected flux levels in the magnetotail plasma sheet	IN.ESA-1
UCB	CC	WBS-2.1.3	IN.ESA-8	4-Subsystem	Dayside Energy Flux	The ion ESA geometric factor shall be attenuated in the solar wind to avoid saturation.	Solar wind ion measurement requires attenuated geometric factor and finer energy steps.	IN.ESA-4
UCB	CC	WBS-2.1.3	IN.ESA-9	4-Subsystem	Partial Moment Contribution	The ESA shall supply partial energy moments at one spin time resolution.	Identifies ESA's contribution to partial moments (medium energy). Data is combined with SST measurements to compute plasma particle	IN.ESA-1
UCB	СС	WBS-2.1.3	IN.ESA-10	4-Subsystem	Angular Resolution (Elevation x Azimuth)	The ESA shall have a 180 degree elevation field of view with a minimum angular resolution of 22.5 degrees.	Angular resolution sufficient for science. ESA will have a FOV of 11.25 degrees. Drives stability of 5.6 degree requirement.	IN.ESA-1
UCB	СС	WBS-2.1.3	IN.ESA-11	4-Subsystem	Dayside Angular Resolution	To resolve the solar wind, the ESA shall have a field of view with enhanced resolution of approximately 6 degrees	Solar wind ion measurement requires attenuated geometric factor and finer energy steps.	IN.ESA-4
UCB	СС	WBS-2.1.3	IN.ESA-12	4-Subsystem	4pi Steradian FOV	The ESA shall produce measurements of particle distributions over the entire doi steradian field of view in one spin period	ESA Particle distribution data must be spin sectored over a spin period. Drives need for spin pulse	IN.ESA-1
UCB	СС	WBS-2.1.3	IN.ESA-13	4-Subsystem	ESA Calibration	ESA calibration shall ensure <20% relative flux uncertainty (not including statistical uncertainty) over the ranges defined above.		IN.ESA-2

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Solid a	State Telesco	pe (IN.SST)						
SST S	cience Require	ements	lus e e e	1	1			1
UCB	DL	WBS-2.1.4	IN.SST-1	4-Subsystem	Science Objective: Disruption Boundary Speed	The SST shall perform measurements of the tailward-moving current disruption boundary speed using the finite gyroradius technique	Helps to determine current disruption onset time	S-2
UCB	DL	WBS-2.1.4	IN.SST-2	4-Subsystem	Science Objective: Time-of-Arrival	The SST shall measure the time-of-arrival of superthermal ions and electrons of different energies emanating from the reconnection region (<10 seconds required)	Helps to determine reconnection onset time	S-3
UCB	DL	WBS-2.1.4	IN.SST-3	4-Subsystem	Science Objective: Partial Moments	The SST shall obtain partial moments of the plasma electron and ion distributions with one spin period time resolution in the magnetotail plasma sheet (<10sec required)	Provides interprobe timing studies to help determine current disruption onset time	S-3
UCB	DL	WBS-2.1.4	IN.SST-4	4-Subsystem	Science Objective: Distributions	The SST shall measure, at one spin resolution, ion and electron distributions that are associated with the current disruption process (<10sec required)	Identifies sources of free energy and evidence of acceleration processes	S-2
UCB	DL	WBS-2.1.4	IN.SST-5	4-Subsystem	Science Objective: Radiation Belt Science	The SST shall measure energetic electron fluxes as close to Earth as 6RE geocentric, at all local times.	Radiation Belt Science. Requirement achieved by nominal (baseline science) design.	S-12
UCB	DL	WBS-2.1.4	IN.SST-6	4-Subsystem	Science Objective: Dayside Science	The SST shall measure energetic ions in the solar wind, at the magnetopause and in the magnetosheath.	Dayside Science. Requirement achieved by nominal (baseline science) design.	S-13
SST In	strument Perfo	ormance Requirer	nents	·				Ċ.
UCB	DL	WBS-2.1.4	IN.SST-7	4-Subsystem	Energy Range	The SST shall measure energetic particles over an energy range of 30- 300keV for ions and 30-100keV for electrons found in the magnetotail plasma sheet .	Provides high part of energy range required for Level 1 Science Requirements. Magetotail region 9-30Re. Large dynamic range of flux requires multiple geometric factors.	IN.SST-1
UCB	DL	WBS-2.1.4	IN.SST-8	4-Subsystem	Energy Resolution	The SST energy sampling resolution, dE/E, shall be better than 30% for ions and electrons.	Resolution adequate for science.	IN.SST-1
UCB	DL	WBS-2.1.4	IN.SST-9	4-Subsystem	Energy Flux	The SST shall be capable of measuring differential energy flux in the range from: 10^2 to 5x10^6 for ions; 10^3-10^7 for electrons (keV/cm2-s -st- keV) whilst providing adequate counts within a 10 second interval. (TBR)	Expected flux levels in the magnetotail plasma sheet	IN.SST-1
UCB	DL	WBS-2.1.4	IN.SST-10	4-Subsystem	Angular Resolution (Elevation)	The SST shall measure over 90 degrees in elevation with a minimum resolution of 45 degrees.	Resolution sufficient for science.	IN.SST-1
UCB	DL	WBS-2.1.4	IN.SST-11	4-Subsystem	Angular Resolution (Azimuth)	The SST shall have an azimuthal resolution of 45 degrees.	Resolution sufficient for science.	IN.SST-1
UCB	DL	WBS-2.1.4	IN.SST-12	4-Subsystem	Partial Moment Contribution	The SST shall supply the high energy partial moments at one spin time resolution	Identifies SST's contribution to partial moments high energy). Data is combined with ESA measurements to compute plasma particle moments.	IN.SST-3
UCB	DL	WBS-2.1.4	IN.SST-13	4-Subsystem	SST Calibration	SST calibration shall ensure <20% relative flux uncertainty over the ranges defined above.		IN.SST-1

Ora.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID			
Fluxga	te Magnetomet	er (IN.EGM)									
EGM S	cience Requiren	nents									
IWF	WM	WBS-2.1.5	IN.FGM-1	4-Subsystem	Science Objective: Magnetic Field	The FGM shall measure DC and low frequency perturbations of the magnetic field	Supports the following mission goals: 1. Measure time wave and structure propagation between probes; and 2. Information on plasma currents based on instantaneous magnetic field differences on two or more probes, separated by >0.2 RE	S-2			
FGM In	strument Perfor	mance Requireme	ents								
IWF	WM	WBS-2.1.5	IN.FGM-2	4-Subsystem	Absolute Stability	The absolute stability of the FGM shall be less than 1nT	Sufficient precision required by Level 1	IN.FGM-1			
IWF	WM	WBS-2.1.5	IN.FGM-3	4-Subsystem	Relative Stability	The relative stability of the FGM shall be less than 0.2nT/12hrs	Interprobe resolution and interorbit (12hrs) stability of 0.2nT required by Level 1 Science	IN.FGM-1			
IWF	WM	WBS-2.1.5	IN.FGM-4	4-Subsystem	Resolution	The FGM digital resolution shall be less than 0.1nT	Ensures stability measurements are obtained	IN.FGM-1			
IWF	WM	WBS-2.1.5	IN.FGM-5	4-Subsystem	Noise Level	The FGM noise level @ 1Hz shall be less than 0.03nT/sqrt(Hz)	Sets noise floor	IN.FGM-1			
IWF	WM	WBS-2.1.5	IN.FGM-6	4-Subsystem	Science Range	The FGM science range shall exceed 0-1000nT		IN.FGM-1			
IWF	WM	WBS-2.1.5	IN.FGM-7	4-Subsystem	Frequency Range	The FGM frequency range shall exceed DC-1 Hz	Problem to find the right compromise between telemetry rate, aliasing errors, and spin period interferences.	IN.FGM-1			
Search	Coil Magnetor	neter (IN.SCM)									
SCM Science Requirements											
CETP	BdIP	WBS-2.1.6	IN.SCM-1	4-Subsystem	Science Objective: Magnetic components	SCM shall provide a critical test for the role of waves at substorm onset, in various models (together with EFI).	SCM shall identify low-frequency wave mode in current disruption region at times of onset at 8-10 Re. SCM shall identify wave mode, in diffusion during times of onset. SCM shall determine direction of k- vector on all probes, at times of onsets. SCM shall provide a survey of wave activity at various probe locations.	S-11			
CETP	BdIP	WBS-2.1.6	IN.SCM-2	4-Subsystem		Deleted	N/A	N/A			
SCM In	strument Perfor	mance Requireme	ents								
CETP	BdIP	WBS-2.1.6	IN.SCM-3	4-Subsystem	Frequency Range	SCM shall measure the 3D AC B-field from 1 Hz to 4kHz	1-128Hz for low-frequency modes, up to 4kHz for whistler branch	IN.SCM-1			
CETP	BdIP	WBS-2.1.6	IN.SCM-4	4-Subsystem	Sensitivity	The SCM sensitivity shall be better than 1pT/Hz^1/2 @10Hz , and 0.1 pT/Hz^1/2 @1 kHz.		IN.SCM-1			
CETP	BdIP	WBS-2.1.6	IN.SCM-5	4-Subsystem	Spectral measurements	The SCM DFT spectral range shall be in the range 16Hz to 4 kHz, transmitted as 32 steps with df/f ~ 25%.		IN.SCM-1			
CETP	BdIP	WBS-2.1.6	IN.SCM-6	4-Subsystem	Calibration	The transfer function of the SCM sensors (amplitude &phase) shall be known with an accuracy better than 5%.	Transfer function will be well calibrated on the ground (in a quite site), and calibrated in flight (once/day).	IN.SCM-1			
CETP	BdIP	WBS-2.1.6	IN.SCM-7	4-Subsystem	Orthogonal Sensors	On each spacecraft the 3 magnetic antennas, shall be held orthogonal by a structure procured by CETP.		IN.SCM-1			
Boom	Requirements (IN.BOOM)									
UCB	DP	WBS-2.1.5.2 WBS-2.1.6.3	IN.BOOM-1	4-Subsystem	Mag Boom Repeatability	Mag Boom deployment shall be repeatible to 1 degree	Number are 3 sigma. Accuracy in knowledge of SCM and FGM magnetic axis must be better than 1 degree. Probe Dynamic Balance.	IN.SCM-1			
UCB	DP	WBS-2.1.5.2 WBS-2.1.6.3	IN.BOOM-2	4-Subsystem	Mag Boom Stability	Mag Boom stability shall be better than 0.1 degree	Specifically, the FGM and SCM mounts shall be stable with respect to their respective Mag Boom bus mounts to within 0.1 degrees, 3 sigma	PB-43			
UCB	DP	WBS-2.1.5.2 WBS-2.1.6.3	IN.BOOM-3	4-Subsystem	Mag Boom Stiffness	Mag Boom deployed stiffness shall be greater than 0.75Hz	Flexible Body Passive Spin Stability (>1.5x Spin Rate)	PB.ACS-1			
UCB	DP	WBS-2.1.5.2 WBS-2.1.6.3	IN.BOOM-4	4-Subsystem	Mag Boom Deployment	Mag Boom shall be designed to be deployed between 0 and 15 RPM	Boom Deployment Strength Design Margins	PB-46			
UCB	DP	WBS-2.1.2	IN.BOOM- 5a	4-Subsystem	EFI Boom Stability	Deployed EFI Axials shall be repeatible and stable to $\Delta\theta$ = 1 degree and $\Delta L/L$ = 1%	Required by EFI Science and Probe Dynamic Balance	IN.EFI-13			
UCB	DP	WBS-2.1.2	IN.BOOM- 5b	4-Subsystem	EFI Boom Stability	Deployed EFI Radials shall be repeatible and stable to $\Delta \theta$ = 1 degree and $\Delta L/L$ = 1%	Required by EFI Science and Probe Dynamic Balance	IN.EFI-13			
UCB	DP	WBS-2.1.2	IN.BOOM-6	4-Subsystem	EFI Axial Boom Deployment	EFI Axial Booms shall be designed to be deployed between 0 and 25 RPM	Boom Mechanism Design Margin	PB-46			
UCB	DP	WBS-2.1.2	IN.BOOM-7	4-Subsystem	EFI Radial Boom Deployment	EFI Radial Booms shall be designed to be deployed between 2 and 25 RPM	Boom Mechanism Design Margin	PB-47			
UCB	DP	WBS-2.1.2	IN.BOOM-8	4-Subsystem	EFI Axial Boom Stiffness	EFI Axial Booms deployed stiffness shall be greater than 0.75Hz	Flexible Body Passive Spin Stability (>1.5x Spin Rate)	PB.ACS-1			

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Instrum	ent Data Proc	essing Unit (IN.D	PU)					
Data Ra	ates							
UCB	ISE	WBS-2.1.1	IN.DPU-1	4-Subsystem	Command Interface	The IDPU DCB shall receive commands from the C&DH Subsystem via a 38.4 kbaud bi-directional serial interface	Interface Requirement	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-2	4-Subsystem	Science Telemetry Data Rate	The IDPU DCB shall send telemetry to the C&DH Subsystem via a 38.4 kbaud bi-directional serial interface	Interface Requirement	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-3	4-Subsystem	Command/HK Telemetry Data Rate	The IDPU DCB high speed interface (science data) to the C&DH Subsystem shall be at multiple fixed (commandable) rates from at least 1 kbps to ~2 Mbps (TBR)	Interface Requirement to Probe. Probe downlink data rates driven by requirement to downlink all science and housekeeping data within 30 minute/day transmitter-on power constraint. Multiple data rates ensures positive link margin for all probes during all parts of orbit.	IN-10
UCB	ISE	WBS-2.1.1	IN.DPU-4	4-Subsystem	Minimum HK Data Rate	The IDPU DCB shall be able to provide real-time housekeeping data stream at the minimum data rate possible (1kbps)	Interface Requirement to Probe. Probe minimum downlink data rate driven by TDRSS emergency mode and contingency operations	M-51
UCB	ISE	WBS-2.1.1	IN.DPU-5	4-Subsystem	Data Compression	The IDPU DCB shall provide loss-less data compression (nominal 2x reduction) for all instrument data	Power constraint and bandwidth allocations drives on-board data compression.	M-50
Data St	orage							
UCB	ISE	WBS-2.1.1	IN.DPU-6	4-Subsystem	Storage of Instrument Science and HK telemetry	The IDPU DCB shall provide sufficient storage for all instrument science and housekeeping telemetry in SSR when not in ground contact: 750Mbits (if uncompressed) +1 day for contingency	Allows all instrument data generated to be transmitted to ground.	IN-12
UCB	ISE	WBS-2.1.1	IN.DPU-7	4-Subsystem	Playback of stored telemetry	The IDPU DCB shall be capable of playing back data upon command during ground contact (pointer from operators)	Accomodates operations concept to downlink specific data during ground contact	M-59
UCB	ISE	WBS-2.1.1	IN.DPU-8	4-Subsystem	Stored telemetry re- transmission	The IDPU DCB shall provide the capability to re-transmit the SSR contents	Accommodates operations concept not to overwrite data on-board until valid data receipt on the ground is confirmed (i.e. transmittal to ground should not erase memory)	M-59
UCB	ISE	WBS-2.1.1	IN.DPU-9	4-Subsystem	Erasure of stored telemetry	The IDPU DCB shall not erase instrument housekeeping telemetry from memory unless commanded to do so	Accommodates operations concept not to overwrite data on-board until valid data receipt on the ground is confirmed (i.e. reset should not erase memory)	M-59
Fault Pr	otection							
UCB	ISE	WBS-2.1.1	IN.DPU-10	4-Subsystem	Command Validation	The IDPU DCB shall validate commands prior to execution	Precludes the execution of an invalid command.	P-16
UCB	ISE	WBS-2.1.1	IN.DPU-11	4-Subsystem	Autonomous Fault Protection	The IDPU DCB shall implement autonomous fault protection features to ensure the health and safety of the instruments	Allows for safe operation of Instruments. Includes instrument over- current protection, high voltage rate shutdown, etc.	IN-5
UCB	ISE	WBS-2.1.1	IN.DPU-12	4-Subsystem	Autonomous Function Enabling	The IDPU DCB shall enable all autonomous functions to be initiated and disabled by ground command	Allows flexibility to adjust for on-orbit conditions.	IN-5
UCB	ISE	WBS-2.1.1	IN.DPU-13	4-Subsystem	Hazardous Commands	The IDPU DCB shall provide separate enable and activation commands for critical instrument functions such as boom deployments	Safety Requirement	IN.DPU-49
UCB	ISE	WBS-2.1.1	IN.DPU-14	4-Subsystem	Flight Software Modification	The IDPU DCB shall provide the capability to upload or modify Instrument flight software.	Ensures fault tolerant system	P-16
Instrum	ent Accommoda	ation						
UCB	ISE	WBS-2.1.1	IN.DPU-15	4-Subsystem	Science Telemetry	The IDPU DCB shall accommodate continuous instrument data governed by overall system mode (Slow Survey, Fast Survey, Particle Burst, Wave Burst I or II). Modes selected by ATS command or on- board triggering logic.	Accommodates all instrument data generated. Reflects need to autonomously change instrument data rate as a function of on-orbit environment.	
UCB	ISE	WBS-2.1.1	IN.DPU-16	4-Subsystem	Instrument Housekeeping Telemetry	The IDPU DCB shall provide housekeeping telemetry sufficient to safely turn-on and operate all instruments (temperatures, currents, voltages, and bi-levels) as defined in Instrument-IDPU ICDs	Allows instrument operation and performance evaluation, as well as anomaly investigation and resolution	M-59
UCB	ISE	WBS-2.1.1	IN.DPU-17	4-Subsystem	Instrument Commanding	The IDPU DCB shall provide operational commands and test programs for all instruments as detailed in the Instrument-IDPU ICDs	Accomodates command and test programs required to operate the instruments (EFI boom deployment, SCM calibration, SST geometric factor control, Solar Wind Attenuator actuator control, etc.)	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-18	4-Subsystem	Instrument Initialization Parameters	The IDPU DCB shall provide initialization parameters to the Instruments as detailed in the Instrument-IDPU ICDs	Provides parameters required to operate the instruments (adjustable moment weighting tables, filter defaults, etc.)	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-19	4-Subsystem	Instrument FSW Processing	The IDPU DCB shall provide the on-board FSW processing required and as detailed in the Flight Software Specification	Provides FSW processing required to operate the instruments (spin fits, moment calculations, spin sectoring, pitch angle computations,	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-20	4-Subsystem	Instrument Thermal Control	The IDPU DCB shall provide Instrument thermal control if necessary (PWM)	Accommodates required instrument thermal environment	M-28
UCB	ISE	WBS-2.1.1	IN.DPU-21	4-Subsystem	FGM Data	The IDPU DCB shall provide FGM telemetry to the Probe C&DH Subsystem at a sample rate of TBD	Probe will use sun sensor and FGM data to estimate attitude on the ground. Data passed directly to Probe for possible technology	PB.ACS-15
Timing	1	1	1		1			1

Ora	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
UCB	ISE	WBS-2.1.1	IN.DPU-22	4-Subsystem	Time-based Clock - Fields Instrument	The IDPU DCB shall receive a 8.192MHz (TBR) Master Clock from the Probe C&DH Subsystem.	Interface Requirement.	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-23	4-Subsystem	Time-based Clock - Fields Instrument	The IDPU DCB shall distribute a 2^23 Hz (8.192MHz) Clock to the DFB and FGM	Interface Requirement. Sufficient for DFB and FGM function.	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-24	4-Subsystem	Data Transfer Clock - Fields Instruments	The IDPU DCB shall receive a 1 Pulse Per Second (1PPS) interface (derived from the 8.192 MHz clock) from the Probe C&DH Subsystem	Provides time synchronization for fields data. Data transfer will be coincident with 1 second pulse	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-25	4-Subsystem	Data Transfer Clock - Fields Instruments	The IDPU DCB shall provide a 1 Pulse Per Second (1PPS) to the DFB and the FGM	Provides time synchronization for fields data. Data transfer will be coincident with 1 second pulse	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-26	4-Subsystem	Data Transfer Clock - Particle Instruments	The IDPU DCB shall receive a raw sun pulse signal from the Probe	Provides spin phase synchronization for particle data. Raw sun crossing data provided by Probe attitude system.	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-27	4-Subsystem	Data Transfer Clock - Particle Instruments	The IDPU DCB shall filter the raw sun pulse signal and provide a once- per-spin reference pulse (SRP) to the SST and ESA	Provides spin phase synchronization for particle data. Data transfer will be coincident with SRP. Filtering details provided in ICD.	IN.ESA-12
UCB	ISE	WBS-2.1.1	IN.DPU-28	4-Subsystem	Spin-based Clock - Particle Instruments	The IDPU DCB shall distribute a Spin Sector Clock with 2^14 phase pulses per spin to the ESA and SST (synchronized with the SRP)	SST and ESA formatter requires clock to spin sector data.	IN.DPU-34
UCB	ISE	WBS-2.1.1	IN.DPU-29	4-Subsystem	Absolute Timing	The IDPU DCB shall receive the Mission Elapsed Time (MET) from the spacecraft and the Universal Time Offset (UTO) as specified in the Spacecraft-IDPU ICD, and will calculate Universal Time (UTC)	Interface Requirement.	IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-30	4-Subsystem	Absolute Timing	The IDPU DCB shall use UTC to time stamp instrument telemetry	Baseline Design.	IN.DPU-29
UCB	ISE	WBS-2.1.1	IN.DPU-31	4-Subsystem	Time-tag accuracy - Particle Instruments	The IDPU DCB shall time-tag ESA and SST Spin Reference Pulse (SRP) to <5 ms	0.83 ms = 0.1 degree and 3 second period. Derived from requirement to spin-sector ESA data, synchronize with SST data.	IN.DPU-34
UCB	ISE	WBS-2.1.1	IN.DPU-32	4-Subsystem	Time-tag accuracy - Fields Instruments	The IDPU DCB shall time-tag DFB and FGM data to <2 ms (max packet rate is 500/sec total)	Derived from sampling rate of DFB ADC system. Relative timing.	
UCB	ISE	WBS-2.1.1	IN.DPU-33	4-Subsystem	Relative Sampling Time - Particle	The IDPU DCB subsystem shall obtain time (UTC w/sub seconds) from the Probe C&DH Subsystem to synchronize Bus and Instrument clocks.		IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-34	4-Subsystem	Relative Sampling Time - Particle	The IDPU DCB shall coordinate ESA and SST synchronization by sending spin count to these systems.	Allows total moments to be calculated on the ground (from partial moments provided by ESA and SST)	IN.ESA-9
UCB	ISE	WBS-2.1.1	IN.DPU-35	4-Subsystem	Relative Sampling Time - Fields	The relative sampling times of FGM, SCM and EFI channels shall be fixed and well known for all modes of operation.	Allows for stable inter-calibration between the two magnetic sensors and the EFI	
DFB Co	re Functional F	Requirements						
UCB	ISE	WBS-2.1.1	IN.DPU-36	4-Subsystem	DFB Functional Requirement: On- board Fields FFT Solution	The IDPU DFB shall provide an DFT solution for determining the parallel and perpendicular components of E (and B) in both survey and burst modes and produce spectra for each quantity separately (FPGA- based)		IN.EFI-8
UCB	ISE	WBS-2.1.1	IN.DPU-37	4-Subsystem	DFB Functional Requirement: On-	The IDPU DFB shall integrate FGM digital data and EFI data to produce E·B (FPGA-based)		
BEB Co	re Functional F	Requirements						
UCB	ISE	WBS-2.1.1	IN.DPU-38	4-Subsystem	BEB Functional Requirements	The IDPU BEB shall provide sensor biasing circuitry, stub and guard voltage control, and boom deployment for the EFI	Required to achieve EFI accuracy requirement	IN.EFI-13
UCB	ISE	WBS-2.1.1	IN.DPU-39	4-Subsystem	EFI Floating Ground Distribution	The IDPU BEB shall distribute a floating ground power supply to the EFI sensors	Required to achieve EFI accuracy requirement	IN.EFI-13
UCB	ISE	WBS-2.1.1	IN.DPU-40	4-Subsystem	EFI Floating Voltage Accuracy	The IDPU BEB shall generate six independent BIAS, GUARD and STUB voltages with an accuracy of 0.1% for distribution to the EFI	Required to achieve EFI accuracy requirement	IN.EFI-13
	ower Distributio			A Cubauatam	IDDU Draha Daviar		laterfere Devicement	
UCB	ISE	WBS-2.1.1	IIN.DPU-41	4-Subsystem	Interface			IN-21
UCB	ISE	WBS-2.1.1	IN.DPU-42	4-Subsystem	IDPU-Probe Power Interface	The IDPU LVPS shall use a separate 28+/-6V (lock-out) actuator supply from the Probe for all boom deploy mechanisms	Safety Requirement	P-18
UCB	ISE	WBS-2.1.1	IN.DPU-43	4-Subsystem	Undervoltage Condition	The IDPU LVPS shall not be damaged by undervoltage conditions	Provides system fault tolerance	IN-4
UCB	ISE	WBS-2.1.1	IN.DPU-44	4-Subsystem	Instrument Regulated Voltages	The IDPU LVPS shall provide Instrument regulated, switched and current-limited voltages as detailed in the Instrument-IDPU ICDs	Interface Requirement. Reflects project decision to provide centralized power conversion, distribution and control for all instruments	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-45	4-Subsystem	Transient Power	The IDPU LVPS shall be capable of providing the transient power needs for actuators as detailed in the Instrument-IDPU ICDs	Interface Requirement. Reflects project decision to provide centralized power conversion, distribution and control for all instruments	IN-20

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
UCB	ISE	WBS-2.1.1	IN.DPU-46	4-Subsystem	Power in-rush, ripple, stability	The IDPU LVPS power line characteristics (i.e. transients, in-rush, ripple, stability, etc) shall be as agreed upon and documented in the Instrument-IDPU ICDs	Interface Requirement. Reflects project decision to provide centralized power conversion, distribution and control for all instruments	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-47	4-Subsystem	Switching Frequencies	All IDPU LVPS switching supplies shall run at frequencies greater than 100 kHz (Requested, not required)	Avoids potential interference with highest sampling rate EFI data	IN.EFI-6
UCB	ISE	WBS-2.1.1	IN.DPU-48	4-Subsystem	Switching Frequencies	The switching frequencies of all power converters shall be known and analyzed for possible interference with SCM measurements (frequency up to 4kHz)	Avoids AC magnetic interference	IN-16
Safety								
UCB	ISE	WBS-2.1.1	IN.DPU-49	4-Subsystem	High Voltage Safety Lock-out	The IDPU shall include sufficient hardware and software safety latches to prevent accidental high voltage turn on to the ESA	Safety Requirement	P-18
UCB	ISE	WBS-2.1.1	IN.DPU-50	4-Subsystem	Boom Deploy Safety Lock-out	The IDPU shall include sufficient hardware and software safety latches to prevent accidental deployment of the booms	Safety Requirement	P-18
Mechan	ical							
UCB	ISE	WBS-2.1.1	IN.DPU-51	4-Subsystem	Standard Card Accommodation	The IDPU box shall accommodate at least five 6U VME cards (DFB, BEB, ESA/SST/FGM Interface, LVPS, DCB) and provide as much radiation protection as possible within mass constraints	Accommodates all IDPU functions including: power distribution and control; data processing and storage; and instrument specific boards	IN-20
UCB	ISE	WBS-2.1.1	IN.DPU-52	4-Subsystem	FGM Calibration Data	The IDPU box shall be designed in conjunction with board level thermal analysis (part dissipation, heat-sinking, thermal wedge-locks) and	Required for instrument operation in predicted thermal environment	M-28

Orq.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Probe E	3us - General (PB-#)						
Mission	Derived Requir	ements and Flow-	down					
Swales	TA	WBS-2.2.2	PB-1	3-Element	Mission Lifetime	The Probe Bus shall be designed for at least a two-year lifetime.	Flow-down	M-1
Swales	ТА	WBS-2.2.2	PB-2	3-Element	Total Dose Radiation	The Probe Bus shall be designed for a total dose environment of 33	Flow-down	M-3
0		WD0 0 0 0		0.51		krad/year (66 krad total) (TBR)		
Swales	IA	WBS-2.2.2	PB-3	3-Element	SEE Radiation	to destructive latch-up.	riow-aown	M-4
Swales	ТА	WBS-2.2.2	PB-4	3-Element	Probe Safe-Hold	The Probe Bus shall have an autonomous safe state after carrier	Flow-down	M-7
Swales	Тл	W/BS 2 2 2	DB 5	3 Element	Failure Detection and	The Probe Rus shall implement Failure Detection and Correction (EDC)	Flow-down	M8
Swales		WDS-2.2.2		2 Element		Each Brobe Bus shall have a unique ID that is non-velitable on orbit	Flow-down	M 10
Swales		WDG 2.2.2	PD-0	3-Element		Each Probe bus shall have a unique ID that is non-volitable on-orbit.	Flow-down	M-10
Swales	IA	VVD3-2.2.2	PD-7	3-Element	Eclipse Constraint	minutes		IVI-20
Swales	ТА	WBS-2.2.2	PB-8	3-Element	Minimal Fuel	The Probe Bus shall require the minimal fuel possible to place probes in desired orbits	Flow-down	M-18
Swales	ТА	WBS-2.2.2	PB-9	3-Element	System Mass Budget	The Probe Bus shall not exceed a dry mass of 47.2 kg (instrument payload not included)	Ensures limiting mass constraint (deltaV to place probes in required orbits) is met with system margin. Not-to-exceed is CBE of 41kg plus	M-21
Swales	TA	WBS-2.2.2	PB-10	3-Element	Allocated Mass Budget	No Probe Bus subsystem shall exceed the allocated mass budget in Table M1	Reflects estimated mass plus contingency based on level of design fidelity.	PB-9
Swales	ТА	WBS-2.2.2	PB-11	3-Element	System Power Budget	The Probe Bus shall require less than 14.5 W average power (instrument payload not included)	Ensures limiting power constraint (probe power generation and storage capability at mission end-of-life) is met with system margin. Not-to-	M-23
Swales	TA	WBS-2.2.2	PB-12	3-Element	Allocated Power Budget	No Probe Bus subsystem shall exceed the allocated power budget in Table P1	Reflects estimated power plus contingency based on level of design fidelity.	PB-11
Swales	ТА	WBS-2.2.2	PB-13	3-Element	Probe Operational Power	Each Probe shall be designed to achieve electrical energy balance over an orbit assuming a 30 minute transmitter power on time and a 180	Flow-down	M-25
Swales	ТА	WBS-2.2.2	PB-14	3-Element	Allocated Data Budget	The Probe Bus shall not exceed the allocated data budget of 87	Accommodates 1kbps probe data rate for P3,P4,P5 (one-day orbits).	M-26
						Mbits/orbit	Drives requirement to have multiple data rates for P1 and P2 (multiple-	
							day orbits). Must be sufficient to support minimum probe	
							housekeeping.	
Swales	ТА	WBS-2.2.2	PB-15	3-Element	Data Storage	The Probe Bus shall be capable of storing 1 orbit + 1 days worth of Probe Bus housekeeping data.	Flow-down	M-27
Swales	ТА	WBS-2.2.2	PB-16	3-Element	Survival Temperature	The Probe Bus subsystems shall survive the temperature ranges provided in Table XX in the ICD	Provides component limits for Probe thermal design	M-28
Swales	ТА	WBS-2.2.2	PB-17	3-Element	Operating Temperature	The Probe Bus subsystems shall perform as designed within the	Provides component limits for Probe thermal design	M-28
						temperature ranges provided in Table XX in the ICD		
Swales	TA	WBS-2.2.2	PB-18	3-Element	Cold Start	The Probe Bus subsystems shall be able to cold start at TBD	Provides component limits for Probe thermal design	M-28
Swales	ТА	WBS-2.2.2	PB-19	3-Element	Magnetics Cleanliness	All Probe Bus shall comply with the Magnetics Cleanliness standard	Flow-down	M-32
Swales	ТА	WBS-222	PB-20	3-Element	Switching frequencies	The switching frequencies of all power converters shall be known and		PB-19
omaico		1100 2.2.2	1 0 20	Element		analyzed for possible interference with SCM measurements (frequency un to 4kHz)		
Swales	ТА	WBS-222	PB-21	3-Element	Electrostatic	The Probe Bus shall comply with the THEMIS Electrostatic Cleanlinese	Flow-down	M-34
Jwales		¥¥D0-2.2.2	1 0-21	0-LICITICIT	Cleanliness	(ESC) Plan		W-04
Swales	ТА	WBS-222	PB-22	3-Element	Contamination Control	The Probe Bus shall comply with the THEMIS Contamination Control	Flow-down	M-37
0.110.00					Plan	Plan		
Swales	ТА	WBS-2.2.2	PB-23	3-Element	Electrical System Specification	All Probe Bus subsystems shall meet the general electrical system requirements documented in the THEMIS Electrical System	Flow-down	M-38
Swales	ТА	WBS-2.2.2	PB-24	3-Element	ICD	The Probe Bus shall be compatible per Instrument-Probe Bus and Probe Bus Subsystem ICDs	Flow-down. Defines where interfaces are documented.	M-39
Swales	TA	WBS-2.2.2	PB-25	3-Element	ICD	The Probe Bus shall be compatible per IDPU-Probe Bus ICD	Flow-down. Defines where interfaces are documented.	M-39
Swales	TA	WBS-2.2.2	PB-26	3-Element	ICD	The Probe Bus shall be compatible per Flight-to-Ground ICD	Flow-down. Defines where interfaces are documented.	M-39
Swales	TA	WBS-2.2.2	PB-27	3-Element	ICD	The Probe Bus shall be compatible per Probe-Probe Carrier ICD	Flow-down. Defines where interfaces are documented.	M-39
Swales	TA	WBS-2.2.2	PB-28	3-Element	ICD	The Probe Bus shall be compatible per Boeing Mission Specification (Launch ICD)	Flow-down. Defines where interfaces are documented.	M-39
Swales	TA	WBS-2.2.2	PB-29	3-Element	Performance Verification	The Probe Bus shall verify performance requirements are met per the Verification Plan and Environmental Specification.	Flow-down	M-40
Swales	ТА	WBS-2.2.2	PB-30	3-Element	Environments	The Probe Bus shall survive and function prior, during and after exposure to the environments described in the Verification Plan and Environmental Specification.	Flow-down	M-41

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Swales	ТА	WBS-2.2.2	PB-31	3-Element	Integration and Testing	The Probe Bus shall be testable during all levels of integration and test	Flow-down	M-42
Swales	ТА	WBS-2.2.2	PB-32	3-Element	Component Stiffness	All Probe Bus structural components shall be designed to have a minimum fundamental frequency of 75 Hz (goal) in the stowed configuration.	Design goal. Avoid coupling between component and Probe / Probe Carrier dynamics. Mass model if below.	M-46
Swales	ТА	WBS-2.2.2	PB-33	3-Element	Ground Station Compatibility	The Probe Bus shall be compatible with BGS, USN, TDRSS, and NASA/GN	Flow-down	M-48
Swales	ТА	WBS-2.2.2	PB-34	3-Element	Frequency and Data Format	The Probe Bus shall be S-Band, CCSDS-compatible and COP-1 compatible	Flow-down	M-49
Swales	ТА	WBS-2.2.2	PB-35	3-Element	Transmitter on time	The Probe Bus shall be capable of downlinking all data within 30 minutes per day per probe (maximum transmitter on time).	Flow-down	M-52
Swales	ТА	WBS-2.2.2	PB-36	3-Element	Uplink data rate	The Probe Bus shall be capable of receiving commands at an uplink data rate of 1 kbps	Flow-down	M-55
Swales	ТА	WBS-2.2.2	PB-37	3-Element	Link Margin	The Probe Bus shall be designed to accommodate a S-Band uplink and downlink link margin of \geq 3dB at all points in orbit through all mission phases	Flow-down	M-56
Swales	ТА	WBS-2.2.2	PB-38	3-Element	Orbital Knowledge	The Probe Bus allow an absolute orbital knowledge accuracy of 10km at Perigee and 100km at Apogee to be determined by the Ground System.	Flow-down	M-58
Instrume	ent Derived Rec	uirements						
Swales	ТА	WBS-2.2.2	PB-39	3-Element	Probe Stabilization	The Probe shall be spin stabilized, with a spin rate between 6-25 rpm during science operations	ESA and SST sensors require that the probe spins at 10-30RPM in order to obtain full azimuth coverage.	IN.ESA-10
Swales	ТА	WBS-2.2.2	PB-40	3-Element	Probe Spin Axis Orientation	The Probe spin axis shall be within 10 +/- 5 degrees of the ecliptic during science operations.	Required by EFI.	IN.EFI-13
Swales	ТА	WBS-2.2.2	PB-41	3-Element	Spin Axis	The Probe spin axis shall be 10 degrees toward the sun on February 21, 2007	See Phase A Concept Study Report, Section E3, Subsection a4	PB-40
Swales	ТА	WBS-2.2.2	PB-42	3-Element	Absolute Inertial Knowledge	The absolute post-processed inertial attitude (spin-axis) of the Probe shall be known to within 1 degree (3-axis), 3 sigma	Required by FGM and SCM. Inertial attitude will be calculated on the ground using sun sensor data from probe and FGM data.	S-8
Swales	ТА	WBS-2.2.2	PB-43	3-Element	FGM Pointing Stability Over 12 hours	Angle between FGM instrument axis (transformation TBD) and the ecliptic plane normal shall not vary more than 0.16 (TBR) degrees over any 12 hour period during normal science observation (required outside	Required by FGM. Measurement of cross tail current in the planar approximation using probes P5 and P4 in the second year.	S-8
Swales	ТА	WBS-2.2.2	PB-44	3-Element	FGM Pointing Stability Over 3 Days	Angles between FGM instrument axis (transformation TBD) and the ecliptic plane normal shall not vary more than 1 (TBR) degree over any 3 day period during normal science observation.	Required by FGM - limits calibration of individual magnetometers to less frequent than once per few days (adding up 0. 16 degrees/12hrs for 3 days gives \sim 1 degree total)	S-8
Swales	ТА	WBS-2.2.2	PB-45	3-Element	Principle Axis Misalignment and Knowledge	The Probe Bus Principle Axis of Inertia shall be aligned within 5.6 degrees, 3 sigma of the Probe Z axis. The probe principle axis of inertia to Z-axis misalignment shall be estimated to within 0.1 degree, 3 sigma using ground-based processing.	Required by ESA, SST. ESA FOV is 11.25 degrees/anode:5.6 degrees PA misalignemnt + 5 degrees spin axis pointing < ESA FOV 11.2 degrees so ESA Anode sees pole? PA misalignment is a large component of FGM to EFI relative orientation. EFI data is transformed to FGM frame for science. FGM and Sun sensor calibration data will be used to estimate PA misalignment.	IN.ESA-10
Swales	ТА	WBS-2.2.2	PB-46	3-Element	FGM, SCM, EFI Axial boom deployment	The spin rate of the Probe Bus shall limit stress on deployment mechanism during rigid boom deployments	Required for FGM, SCM and Axial EFI Boom Deploy	PB-48
Swales	ТА	WBS-2.2.2	PB-47	3-Element	Radial EFI Boom deployment	The spin rate of the Probe Bus shall keep wire booms from tangling during boom deployments	Required for EFI Radial Boom Deploy	PB-48
Swales	TA	WBS-2.2.2	PB-48	3-Element	Dynamic Stability	The Probe Bus shall maintain passive spin stability during all boom deployments.	Passive spin stabilized system reduces complexity and avoids need for nutation control system	PB-39
Swales	ТА	WBS-2.2.2	PB-49	3-Element	Worst-Case Boom Deployment	One boom deployment failure shall not jeopardize the subsequent deployments and operation of that Probe	Allows for fault tolerant system	M-5
Swales	TA	WBS-2.2.2	PB-50	3-Element	Probe Spin Axis Direction	The Probe Bus positive spin vector shall be aligned with the Probe positive Z axis.	Supports FGM and SCM boom deployment	PB-48

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
PB Com	munications (PB.Com-#)						
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-1	4-Subsystem	Ground Station Compatibility	The Communications Subsystem shall be compatible with BGS, USN, TDRSS, and NASA/GN	flow down	PB-33
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-2	4-Subsystem	Uplink data rate	The Communications Subsystem shall support an uplink data rate of 1 kbps	flow down	PB-36
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-3	4-Subsystem	Receiver Powered at all times	The Receiver shall remain powered at all times	Hard Critical commanding circuitry must be capable of being commanded at all times. Essential function required for Safe-Hold mode.	PB.CDH-4
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-4	4-Subsystem	Multiple Downlink Rates	The Communication Subsystem shall support multiple downlink data rates ranging from a minimum of 1 kbps to a maximum of 1024 kbps (TBR - 2048 kbps)	Baselined downlink capability based upon downlinking all data within <20min per contact. Lower data rate required for P1 and P2.	PB-35
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-5	4-Subsystem	Link Encoding	The Communications Subsystem shall provide Reed-Solomon & Convolutional encoding on the downlink. (Rate 1/2 K=7)	Maximize link margin by encoding. Industry Standard	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-6	4-Subsystem	Convolutional Encoding On/Off	The Communications Subsystem shall provide the capability to turn off Convolutional encoding on the downlink.	Enables increase in data volume if on-orbit link performance is better than expected.	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-7	4-Subsystem	Downlink Power	The Downlink EIRP shall be a minimum of 3.5 dBW within the primary antenna coverage area, defined as the $\pm 45^{\circ}$ band about the spacecraft x-y plane	Baseline UCB station. Envelopes other stations (matches or exceeds).	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-8	4-Subsystem	Uplink Power	The Uplink EIRP shall be TBD dBW	Baseline meeting link margin requirement	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-9	4-Subsystem	Downlink G/T	The Downlink G/T shall be greater than TBD dB/K	Baseline meeting link margin requirement	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-10	4-Subsystem	Uplink G/T	The Uplink G/T shall be greater than TBD dB/K	Baseline meeting link margin requirement	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-11	4-Subsystem	Polarization	The Probe antenna shall have circular polarization	Baseline meeting link margin requirement, and maintaining compatability with the Ground System	PB-37
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-12	4-Subsystem	Ranging	The Communications Subsystem shall support two-way coherent doppler ranging	Supports orbit knowledge requirement	PB-38
Swales	Kraeuter	WBS-2.2.2.2.6	PB.Com-13	4-Subsystem	Hardline Interface	The Communications Subsystem shall provide "hard line" command and telemetry to accommodate probe testing without using the RF link to the transponder.	Fundamental to support I&T activities	PB-31

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
PB Attit	ude Control S	ystem (PB.ACS-	#)	<u>.</u>				
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-1	4-Subsystem	Spin Stabilization	The Bus shall be "passive" spin stabilized	Support spin rate without complexity and propulsion for nutation control. Keeps wire booms from tangling	PB-39
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-2	4-Subsystem	Spin Rate Control	The Bus spin rate shall be between 6 and 25 RPM during nominal science operations	Flow-down from Instruments	PB-39
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-3	4-Subsystem	Spin Rate Control Accuracy	The Bus shall be capable of increasing or decreasing its spin rate by 1 RPM.	Spin based on instrument sample rate. Desire to control.	
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-4	4-Subsystem	On-Board Spin Rate Measurement Resolution	The Bus shall be able to measure its spin rate to 0.1 RPM resolution on- board [TBR].	Fault Detection	
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-5	4-Subsystem	On-Board Spin Phase Knowledge	The Bus shall be able to maintain on-board inertial spin phase knowledge to 0.1 degree [TBR] during side thrusting maneuvers.	Phase tangential thrust to enable thrusting orthogonal to the spin vector. (sun-synchronous pulse triggering).	
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-6	4-Subsystem	Probe Inertial Pointing	The ACS shall point the probe bus spin axis within 5 degrees (3 sigma) of an inertially fixed observation reference during normal science observation (when the probe is farther than 5 Earth radii from the Earth Center and TBD hours after slew or eclipse exit or entry)	Enhance B-field measurement accuracy by increasing Z-axis component. The inertially fixed observation plane is rotated 10 degrees from the February 21, 2007 ecliptic plane about an axis in the ecliptic plane perpendicular to a line from the Sun to the Earth.	PB-40
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-7	4-Subsystem	Principle Axis Misalignment Stability Over 12 Hours	The angle between the probe principle axis inertia and the probe Z-axis shall not vary more than 0.1 degrees (3 sigma) over any 12 hour period during normal science observation (when the probe is farther than 5 Re from the Earth center and TBD hours after slew or eclipse exit or entry).	Measurement of cross tail current in the planar approximation using probes P5 and P4 in the second year.	PB-43
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-8	4-Subsystem	Principle Axis Misalignment Stability Over 3 Days	The angle between the probe principle axis inertia and the probe Z-axis shall not vary more than 0.6 degrees (3 sigma) over any 3 day period during normal science observation (when the probe is farther than 5 Re from the Earth center and TBD hours after slew or eclipse exit or entry).	Limits calibration of individual magnetometers to less frequent than once per few days (adding up 0.1 degrees/12hrs for 3 days gives 0.6 degree total)	PB-44
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-9	4-Subsystem	Initial spin rate for FGM and SCM boom deployment	The Bus initial spin rate during FGM and SCM boom deployment shall be between 0 and 15 RPM	Limit stress on deployment mechanism	PB-46
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-10	4-Subsystem	Spin rate during Radial EFI Boom deployment	The Bus spin rate during radial EFI boom deployment shall be between 2 and 25 RPM	Limit stress on deployment mechanism Keep wire booms from tangling	PB-47
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-11	4-Subsystem	Spin rate during Axial EFI Boom deployment	The Bus spin rate during axial EFI boom deployment shall be between 0 and 25 RPM	Limit stress on deployment mechanism Keep wire booms from tangling	PB-46
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-12	4-Subsystem	Positive Stability	The Bus shall maintain positive stability in all nominal on-orbit deployment configurations and all off-nominal configurations in which only one boom deployment fails.	"Passive" spin stabilized to avoid need for nutation control system One boom deployment failure shall not jeopardize the minimum science mission	PB-48
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-13	4-Subsystem	Sun Sensor Data for Ground-Based Absolute Inertial Pointing Knowledge	The Bus shall produce sun sensor data with suffient accuracy to enable ground-based absolute inertial attitude estimation of the bus spin phase during normal science observations to within 1 degree (3 sigma), over one orbit, using TBD hours of sun sensor measurements.	Contingency attitude determination without augmentation	PB.ACS-19
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-14	4-Subsystem	Spin Axis Stability	The angle between the probe spin axis and the observation reference shall not vary more than 0.1 degrees (3 sigma) over any 12 hour period, or 0.6 degrees (3 sigma) over any 3 day period, during normal science observation (when the probe is farther than 5 Re from the Earth center and TBD hours after slew or eclipse exit or entry)	Measurement of cross tail current in the planar approximation using probes P5 and P4 in the second year. Measurement of current sheet with 2 Probes requires relative probe stability. Limits simultaneous calibration of magnetometer to less frequent than once per few days (adding up 0.1 degrees/12hrs for 3 days gives 0.6 degree total)	
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-15	4-Subsystem	Attitude Sensor Information	The Bus shall provide all raw attitude sensor information in its housekeeping telemetry.	Ground-based attitude determination will process attitude sensor data	M-60
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-16	4-Subsystem	Sun Sensor Information to IDPU	The Bus shall provide raw sun sensor information to the C&DH subsystem for transfer to the instrument	The IDPU shall provide pitch angle computations for the ESA. The DCB shall provide a Spin Phase Clock to the SST and ESA (accurate to +/- TBD). The DCB shall read Sun sensor data from the spacecraft status packet. The DCB shall time-tag Sun sensor data to spin-sector SST and ESA data. The DCB shall calculate the spin period. The DCB shall control the Spin Sectoring Circuit to produce spin pulses at the	IN.ESA-12
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-17	4-Subsystem	Sun Sensor Data	The Bus shall produce sun sensor data with sufficient (TBD) accuracy to enable ground-based estimation of the spin-phase to within 1 degree, 3 sigma (TBR).	Spin phase combined with spin axis attitude and principle axis to Z-axis knowledge provides bus Z-axis inertial pointing knowledge	PB.ACS-19

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-18	4-Subsystem	Principle Axis Misalignment Knowledge	The Bus principle axis to Z-axis misalignment shall be estimated to within 0.1 degree, (3 sigma) during FGM calibration using ground-based processing.	PA misalignment is a large component of FGM to EFI relative orientation FGM to inertial. EFI data is transformed to FGM frame for science. FGM and Sun sensor calibration data will be used to estimate PA	PB-44
Swales	LeBoeuf	WBS-2.2.2.2.1	PB.ACS-19	4-Subsystem	Probe spin axis inertial pointing knowledge	The probe spin axis inertial orientation shall be estimated in ground- based processing to within 1 degree, 3 sigma once per orbit during normal science operation (when the probe is farther than 5 Re from the Earth center and TBD hours after slew or eclipse exit or entry)	Baseline attitude determination will use sun sensor and FGM data to estimate attitude near perigee. Spin axis attitude will be propagated around the rest of the orbit.	PB-42
PB Rea	ction Control S	System (PB.RCS	-#)					
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-1	4-Subsystem	Maximum Probe Dry Mass	Each THEMIS Probe shall be designed to accommodate a 82kg (TBR) dry mass	Includes Project margin for dry mass	M-22
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-2	4-Subsystem	Delta V capability	The Reaction Control System shall provide the required delta-V of 650m/s (566m/s + 15% contingency) plus TBD propellant margin (on launch) (TBR)	Required to meet orbital placement and phasing. 15% contingency required to account fo errors in the delta-V calculations. TBD margin on launch required to account for operator errors, etc. on-orbit.	M-22
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-3	4-Subsystem	ACS maneuvers capability	The Reaction Control System shall provide 1.6kg + 15% (TBR) of Hydrazine propellant for probe attitude control maneuvers for the maximum expected probe dry mass.	Spin Axis precession, spin rate control. 15% contingency required to account for errors in the attitude control calculations	PB.ACS-3
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-4	4-Subsystem	Delta V impulse, maximum	The Bus shall be capable of providing a delta-V impulse less than 80cm/s (Orbit control)	Mission maneuver design decision, sets maximum thruster size From DRM, spin plane booms???	
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-5	4-Subsystem	Delta V Impulse, minimum	Maneuvers shall be completed within planned mission time constraints (TBD Value)	Mission maneuver design decision, sets minimum thruster size	PB.ACS-3
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-6	4-Subsystem	Propulsion plume contamination	The propulsion plume thrust vector shall point away from the ESA and SST apertures.	ESA and SST sensors are contamination sensitive	PB-22
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-7	4-Subsystem	Δ -V Orientation	The Reaction Control System shall Provide ∆-V capability along the positive spin axis	Large orbit adjust burns, to be accomplished with steady state burns will make use of axial thrusters oriented along the spin axis.	PB-8
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-8	4-Subsystem	Δ-V Orientation	The Reaction Control System shall Provide Δ -V in the spin plane	Minor Delta-V adjustments normal to the spin axis must not require re- orienting the spacecraft spin axis	PB-8
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-9	4-Subsystem	Spin Rate Control	The Reaction Control System shall Provide Spin Rate Control	Deployment of booms and other perturbations will cause deviations from the required spin rate. The RCS must be capable of compensating for these variations.	PB.ACS-3
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-10	4-Subsystem	Spin Axis Precession Control	The Reaction Control System shall Provide Spin Axis Precession control	Initial separation from the launch vehicle as well as performance of orbit adjust maneuvers will require control of spin axis orientation	PB.ACS-6
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-11	4-Subsystem	$\Delta\text{-V}$ and $\Delta\text{-}\omega$ Budgets	The Reaction Control System shall maintain probe spin balance from launch phase though deorbit	Derived Requirement,	PB.ACS-12
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-12	4-Subsystem	$\Delta\text{-V}$ and $\Delta\text{-}\omega$ Budgets	The Reaction Control System shall have a minimum impulse bit of TBD for $\Delta\!-\!\omega$	Spin rate trim burns	PB.ACS-3
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-13	4-Subsystem	Monitoring	The Reaction Control System shall provide pressure telemetry.	Pressure telemetry (along with Temperature telemetry from the thermal subsystem) will be used to assess the health of the propulsion system and assist in propellant use bookkeeping.	PB.CDH-20
Swales	McCullough	WBS-2.2.2.1.2	PB.RCS-14	4-Subsystem	Monitoring	The Reaction Control System shall provide positive indication of latch valve position	Prelaunch activities require operation and monitoring of latch valve positions	P-18

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
PB Elec	trical Power	System (PB.EPS-	#)					
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-1	4-Subsystem	Power Distribution	The EPS shall control and distribute electrical power to the Probe Bus and the IDPU.	The Probe Bus distributes power to the Subsystems and IDPU. IDPU distributes power to the instruments.	PB-24
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-2	4-Subsystem	Probe Bus Voltage Range	The EPS shall provide 28+/-6 V to the Instrument IDPU	Interface Requirement	PB-25
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-3	4-Subsystem	Actuator Power Interface	The EPS shall provide a separate 28+/-6V (lock-out) actuator supply	Safety Requirement for Instrument deployment devices	P-18
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-4	4-Subsystem	Maintain Power Positive	The EPS shall be designed so that the battery is charged during normal science mode	Derived by requirement to be achieve energy balance during all modes of operation (nominal mode)	PB-13
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-5	4-Subsystem	Maintain Bus Power Through Launch	The Battery capacity shall be sufficient to provide power for the Bus through the worst-case launch scenario of less that TBD hours, until positive power balance is achieved.	Derived by requirement to achieve energy balance during all modes of operation (post-launch mode)	PB-13
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-6	4-Subsystem	On-orbit Average Power	The EPS shall be provide at least 41.5 W on-orbit average power EOL.	Flow-down	M-24
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-7	4-Subsystem	Peak Power Load	The EPS shall provide peak power of 65W (TBC) during downlink operations for a duration of 30 minutes	Derived by requirement to achieve energy balance during all modes of operation (downlink mode). Based on required transmitter on time per orbit.	PB-13
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-8	4-Subsystem	Operation During Maximum Eclipse Length	The EPS shall provide an average power of 49W (TBC) during the maximum eclipse duration of 180 minutes	Derived by requirement to be achieve energy balance during all modes of operation (eclipse mode). Based on maximum eclipse assumption.	PB-13
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-9	4-Subsystem	Solar Array Sizing	The Solar Array shall be sized to meet worst case power requirements at EOL.	Derived by requirement to be achieve energy balance during all modes of operation (EOL).	PB.EPS-6
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-10	4-Subsystem	Battery On/Off Control for test	The EPS shall provide the means of switching the battery on/off the Bus.	Battery must be able to be switched on and off during I&T	PB-31
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-11	4-Subsystem	Battery On/Off Control On-orbit	It shall not be possible to switch the battery off the bus during flight.	Battery must not be able to be switched off during flight.	PB-4
Swales	Kraeuter	WBS-2.2.2.2.4	PB.EPS-12	4-Subsystem	Solar Array Interconnects	The Solar Array manufacturing shall be compliant with the Electrostatic Cleanliness (ESC) Plan	Required to mitigate Electro Static Cleanliness Concerns	PB-21

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
PB Com	mand and Dat	a Handling (PB.	CDH-#)					
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-1	4-Subsystem	CCSDS Compatibility	All Bus command and telemetry shall be compatible with CCSDS recommendations	NASA standard.	PB-34
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-2	4-Subsystem	COP-1 Protocol	The C&DH subsystem shall use the COP-1 protocol	NASA standard.	PB-34
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-3	4-Subsystem	Receive & Process Commands	The C&DH subsystem shall receive and process commands destined for the Bus electronics	Core function of C&DH, derived from need to get data, also needed for responding to FDC	PB-5
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-4	4-Subsystem	Receive Ground Commands at all times	The C&DH subsystem shall be capable of receiving ground commands at all times	Minimum amount of autonomous operation requires continuous commanding capability.	PB-4
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-5	4-Subsystem	Hardline Interface	The C&DH subsystem shall provide "hard line" command and telemetry to accommodate probe testing without a transponder.	Fundamental to support I&T	PB-31
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-6	4-Subsystem	Command processing rate	The C&DH subsystem shall be capable of processing commands at a rate of 1kbps	Supports baseline uplink rate	PB-36
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-7	4-Subsystem	Special Commands	The C&DH subsystem shall execute Special commands (hardware- decoded) immediately with no involvement from the Flight Computer	Capability to remotely reset Flight Computer due to an upset.	PB-4
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-8	4-Subsystem	Flight Computer Commands	The C&DH subsystem shall forward all other commands (software- decoded) to it's Flight Computer for processing.	Most commands will be processed by the Flight Computer.	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-9	4-Subsystem	Maintain command order	The C&DH subsystem shall maintain the order of commands	Core function.	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-10	4-Subsystem	Instrument Commands	The C&DH subsystem shall forward all Instrument commands to the IDPU within TBD seconds of receipt	Architecture Decision. The IDPU receives commands via the Flight Computer	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-11	4-Subsystem	Real-time & Stored Commands	The C&DH subsystem shall provide real-time and stored command capability	The Flight Computer will be capable of executing commands in real- time, or at the time specified in the command	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-12	4-Subsystem	Absolute Time Commands	The C&DH subsystem shall provide Absolute Time Sequence (ATS) commands expressed in UTC times with resolution of 1 second	The Flight Computer will be capable of executing commands using absolute time	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-13	4-Subsystem	Relative Time Commands	The C&DH subsystem shall provide Relative Time Sequence (RTS) commands	The Flight Computer will be capable of executing commands using relative time	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-14	4-Subsystem	Instrument Command Storage	The C&DH subsystem shall provide a sufficient amount of command storage.	Command storage will be sized during design process.	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-15	4-Subsystem	Load and Execute Commands	The C&DH subsystem shall be able to load and execute commands simultaneously	Capability to execute commands during command loads.	PB.CDH-3
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-16	4-Subsystem	Separation Detection	The C&DH subsystem shall detect the Launch Vehicle separation signal and autonomously begin a pre-programmed command sequence to separate from the Probe Carrier	Design Decision to reduce cost of the Probe Carrier. The C&DH subsystem will contain functionality to autonomously issue commands to separate the Probe from the Carrier	P.C.Mec-2
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-17	4-Subsystem	Autonomous Fault Protection	The C&DH subsystem shall implement autonomous fault protection features to ensure the health and safety of the probe	The C&DH subsystem will contain functionality to autonomously issue commands to safe the Probe	PB-5
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-18	4-Subsystem	Autonomous Function Enabling	The C&DH subsystem shall be capable of enabling or disabling each autonomous function via ground command	Design Decision for safety. Autonomous functions should be able to be disabled	PB.CDH-17
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-19	4-Subsystem	Flight Software Modification	The C&DH subsystem shall provide the capability to upload or modify Probe Bus flight software.	Flight software should be able to be modified without requiring physical contact with the hardware.	P-16
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-20	4-Subsystem	Provide Engineering Telemetry	The C&DH subsystem shall provide Bus housekeeping telemetry sufficient to safely operate the probe (temps, currents, voltages, and bi- levels).	Telemetering engineering data is the responsibility of the C&DH subsystem	M-59
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-21	4-Subsystem	ACS Sensors and Actuators	The C&DH subsystem shall receive telemetry from the ACS sensors and actuators, and include it in housekeeping telemetry	The C&DH subsystem telemeters data from the sun sensor	PB.ACS-15
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-22	4-Subsystem	Generation of housekeeping telemetry	The C&DH subsystem shall generate real-time housekeeping telemetry at all times	The C&DH subsystem continuously generates housekeeping telemetry	PB.CDH-20
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-23	4-Subsystem	Transmission of housekeeping telemetry	The C&DH subsystem shall transmit real-time housekeeping telemetry when in ground contact	Housekeeping telemetry is transmitted real-time when in ground contact	M-59
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-24	4-Subsystem	Storage of housekeeping telemetry	The C&DH subsystem shall store housekeeping telemetry when not in ground contact	Housekeeping telemetry is always buffered by the C&DH subsystem	PB-15
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-25	4-Subsystem	Housekeeping telemetry storage capacity	The C&DH subsystem shall be capable of storing one orbits + 1 days worth of minimum housekeeping telemetry	Storage for one orbit + 1 day of HK TLM is nominally sized at 11 Mbytes	PB-15
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-26	4-Subsystem	Playback of stored telemetry	The C&DH subsystem shall play back stored telemetry when commanded	Stored telemetry is not automatically deleted after playback	M-59

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-27	4-Subsystem	Erasure of stored	The C&DH subsystem shall erase stored telemetry after playback only	Stored telemetry is maintained after playback	M-59
					telemetry	when commanded to do so.		
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-28	4-Subsystem	Telemetry over-write	The C&DH subsystem shall be capable of altering the housekeeping	Maximizes utilization of on-board telemetry storage capability	M-59
						telemetry acquisition rate based on ground command		
Curalas	Keesster			1 Cubeusters	Interlection of	The CODUL subsurface shall be seenable of all time book stand tale water	Dischards of stamped to breat will not offer the service is a star of the state	14.50
Swales	Kraeuler	VVD3-2.2.2.2.1	PB.CDH-29	4-Subsystem	tolemetry streams	interleaved with real time beveckeening telemetry		101-59
Swaloo	Kraoutor	W/DS 2 2 2 2 1		4 Subovetom		Deleted		NI/A
Swales	Naeulei	VVD 3- 2.2.2.2.1	FB.CDH-30	4-Subsystem	IN/A	Deleted	1WA	IN/A
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-31	4-Subsystem	Multiple Downlink	The C&DH subsystem shall be capable of downlinking at multiple	Multiple downlink rates. NTIA bandwidth could be a problem for	PB-14
					Rates	selectable rates ranging from 1 kbps to 1024 kbps (TBR - 2048 kbps)	>1Mbps	
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-32	4-Subsystem	Housekeeping	The C&DH subsystem housekeeping telemetry storage rate shall be	Lowest telemetry storage rate for housekeeping is 250 bps to allow for	PB.CDH-25
					Telemetry Storage	programmable from 250 bps to 4000 bps.	flexibility in the case of missed passes	
					Rate			
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-33	4-Subsystem	Time-tagging of	C&DH subsystem telemetry data shall be time-tagged with acquisition	Time tagging telemetry data	
					Telemetry Data	time accurate to within +/- (TBD) ms		
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-34	4-Subsystem	Time-tagging of ACS	C&DH subsystem ACS telemetry data shall be time-tagged with	Time tagging telemetry for the ground ACS system has tighter time	PB.ACS-15
					Telemetry Data	acquisition time accurate to within +/- (TBD) ms	tagging requirements than other data. ACS data includes sun sensor,	
							gyros, thruster information.	
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-35	4-Subsystem	Virtual Channel IDs	The telemetry format shall provide the means of distinguishing between	Use virtual IDs to distinguish between different data streams	M-60
0	Kara ta i			10	Martin Olari	data streams by the use of virtual channel IDs		DD 05
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-36	4-Subsystem	Master Clock	The C&DH subsystem shall provide a 8.192 MHZ (TBR) master clock	Master Clock distributed	PB-25
Swalaa	Kreeuter			4 Cuboustom	1 Dulas Dar Second	to the IDPU. Clock tolerance and stability is TBD.	Use 1000 interface to supervise subsustance	DD 25
Swales	Kraeuler	VVDO-2.2.2.2.1	PB.CDH-37	4-Subsystem	interface	interface (derived from the 8 102 MHz cleak) to all Subayatoms and the	Use TPP's Interface to synchronize subsystems.	PD-20
					Interface	Interface (derived from the 6.192 MHZ Clock) to all Subsystems and the		
Swales	Kraeuter	W/BS-22221	PB CDH-38	4-Subsystem	IDPLI Synchronization	The C&DH subsystem shall distribute time (LITC w/sub seconds) to the	Distribute time between Bus and Instrument electronics	PB-25
Owalco	Rideuter	VVDO-2.2.2.2.1	I D.ODII-00	4-Oubsystem	1D1 0 Oynemonization	IDPU to synchronize Bus and Instrument clocks.		1 0-23
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-39	4-Subsystem	IDPU Commands &	The C&DH subsystem shall send commands to and receive	Instrument requirement	PB-25
					Telemetry	housekeeping telemetry from the IDPU via a bi-directional serial	······································	
						interface		
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-40	4-Subsystem	Command/Telemetry	The bi-directional serial interface to the IDPU shall have a transfer rate	Design decision	PB-25
				-	Interface Rate	of 38.4 (TBR) kbps		
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-41	4-Subsystem	Instrument Telemetry	The C&DH subsystem shall receive FGM telemetry from the IDPU	Instrument utilizes Bus downlink to send engineering data to the	PB.ACS-15
				-			ground	
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-42	4-Subsystem	Instrument Telemetry	Instrument HSK & FGM telemetry shall be included in real time HKS	Attitude Control software on the ground requires engineering data from	PB.ACS-15
							the Instrument	
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-43	4-Subsystem	C&DH to IDPU	Sun Sensor telemetry shall be sent to the IDPU to within +/- TBD timing	The IDPU provides a Spin Phase Clock to the SST and ESA. Spin	PB.ACS-16
					Telemetry	accuracy	Pulse from the Probe would be simplest implementation.	
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-44	4-Subsystem	Maintain UTC Time	The C&DH subsystem shall maintain Coordinated Universal Time	1 second per day goal. May drive operational requirements.	
						(UTC) with an accuracy of +/- TBD.		
Swales	Kraeuter	WBS-2.2.2.2.1	PB.CDH-45	4-Subsystem	Maintain MET Time	The C&DH subsystem shall maintain Mission Elapsed Time (MET)	Core function	PB-25

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
PB Flig	nt Software (F	PB.FSW-#)						
Swales	Hammers	WBS-2.2.2.3	PB.FSW-1	4-Subsystem	On-board Flight	The C&DH subsystem shall contain Flight Software in order to perform	Design Decision: The Bus Avionics will contain a single board	
					Software	the specified C&DH functions	computer that will require flight software	
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-2	4-Subsystem	Flight Software Storage	The Flight Code shall be stored in Electrically Erasable Programmable	Design Decision: Flight software must be stored in EEPROM	
				,	с с	Read-Only Memory (EEPROM) residing within the Bus Avionics		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-3	4-Subsystem	Code Image	The Code Image (Build Number) loaded onto each of the 5 THEMIS	Probes must be identical	PB-6
					-	Probes shall be identical.		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-4	4-Subsystem	Data Image	Probe Specific Data Images (Tables) shall be loaded onto each of the 5	Required for each probe to have a unique ID	PB-6
					-	THEMIS Probes.		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-5	4-Subsystem	Software Load Integrity	Upon a load of code or data image to the C&DH processor, it shall be	Required for Flight Software Assurance	P-16
						possible to verify the integrity of the image.		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-6	4-Subsystem	Software Version	The Flight Software Code image version loaded and executing on a	Required for Flight Software Assurance	P-16
						Probe shall be reported in real-time telemetry.		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-7	4-Subsystem	Probe ID	The Probe Specific Data Image shall contain the probe's unique ID,	Required for each probe to have a unique ID	PB-6
						which will be available in real-time telemetry.		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-8	4-Subsystem	Flight Software	The Flight Software shall provide commands and telemetry required to	Core Software Function	
					Maintenance	perform dumps, loads, and telemetering of memory and tables.		
Swales	Hammers	WBS-2.2.2.3	PB.FSW-9	4-Subsystem	Cold Restart	The Flight Software shall perform a Cold Restart upon any of the	Number of Warm Resets is a default variable.	
						following conditions: Power-On of the Bus Avionics, Ground Command,		
						or 5 (TBC) ground selectable consecutive Warm Restarts		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-10	4-Subsystem	Cold Restart	The Flight Software shall be capable of processing ground commands	System must be able to start up from Cold Restart	PB-18
						within 40 seconds (TBC) after a Cold Restart		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-11	4-Subsystem	Initialization	The Flight Software shall initialize the processor and its on-board		
						devices and peripherals as needed for its own operation without		
						operator intervention		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-12	4-Subsystem	Warm Restart	Upon a warm restart, the system startup software shall reload the code		
						area but preserve RAM data areas.		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-13	4-Subsystem	Warm Restart	The flight software shall be able to perform a warm restart in an attempt	Possibly want to change thruster state on warm restart	
						to recover from a detected software anomaly with minimal impact on		
						normal processing activity.		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-14	4-Subsystem	Watchdog Timer	Upon any kind of Restart, the Flight Software shall begin servicing the		
						Watchdog hardware within 40 seconds (TBC)		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-15	4-Subsystem	Command Validation	The Flight Software shall validate commands prior to execution	Required for Flight Software Assurance	P-16
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-16	4-Subsystem	Command Rejection	The Flight Software shall reject any command that cannot be validated	Required for Flight Software Assurance	P-16
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-17	4-Subsystem	Command Execution	All commands executed by the processor shall be verifiable on the	Required for Flight Software Assurance	P-16
					Verification	ground. Where end point telemetry verification is not possible, separate		
						counters in software shall increment to indicate whether the command		
						was processed or rejected by the Flight Software		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-18	4-Subsystem	Memory Integrity	The Flight Software shall verify program and data code area integrity	Required for Flight Software Assurance	P-16
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-19	4-Subsystem	CPU Utilization	Maximum CPU utilization shall be less than 50% during the PDR phase,	Design Goals	
						and shall be less than 75% at CDR		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-20	4-Subsystem	EEPROM Utilization	Maximum EEPROM utilization shall be less than 50% during the PDR	Design Goals	
						phase, and shall be less than 75% at CDR		
Swales	Hammers	WBS-2.2.2.2.3	PB.FSW-21	4-Subsystem	Processor RAM	Maximum Processor RAM utilization shall be less than 50% during the	Design Goals	
1			1		Utilization	PDR phase, and shall be less than 75% at CDR		

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
PB Med	hanical Syster	ns (PB.Mec-#)						
Swales	Lashley	WBS-2.2.2	P.B.Mec-1	4-Subsystem	Instrument Accomodation	The Probe structure shall accommodate the location, alignment, co- alignment, envelope, interface, mass, stability, harnesses, and FOV of the instruments as defined in Instrument-Probe ICDs. The structure shall provide access to the instruments during I&T.	Interface Requirement	PB-24
Swales	Lashley	WBS-2.2.2	P.B.Mec-2	4-Subsystem	Tank Accommodation	The Probe structure shall accommodate the propulsion system tanks, lines, valves and thrusters as defined in TBD.	Interface Requirement	PB-24
Swales	Lashley	WBS-2.2.2	P.B.Mec-3	4-Subsystem	Accommodation	The Probe shall provide access to the RCS vent and drain valves and tubes with the Probe integrated to the PC on the launch vehicle (TBR).	Interface Requirement	PB-27
Swales	Lashley	WBS-2.2.2	P.B.Mec-4	4-Subsystem	Accommodation	The Probe structure shall accommodate the interfaces and envelopes of the Probe spacecraft avionic components and harnesses as defined in TBD. The structure shall provide access to the components during I&T.	Interface Requirement	PB-24
Swales	Lashley	WBS-2.2.2	P.B.Mec-5	4-Subsystem	Mass properties	The Probe shall have a ratio of spin axis of inertia to transverse axis of inertia > 1.04 for all nominal and off-nominal on-orbit configurations.	Ensure that Probe is passively spin-stable under all conditions	PB.ACS-1
Swales	Lashley	WBS-2.2.2	P.B.Mec-6	4-Subsystem	Mass properties	The Probe Principle Axis of Inertia shall be aligned within 5.6 degrees, 3 sigma, (TBR) of the Probe Z axis.	5.6 degrees PA misalignemnt + 5 degrees spin axis pointing < ESA FOV 11.2 degrees so ESA Anode sees pole?	PB.ACS-6
Swales	Lashley	WBS-2.2.2	P.B.Mec-7	4-Subsystem	Mass properties	The Probe c.g. shall be offset from the Probe Bus Z axis by less than TBD in.	Probe balance requirement	PB.ACS-6
Swales	Lashley	WBS-2.2.2	P.B.Mec-8	4-Subsystem	Mass properties	The probe structure shall be designed for a max Probe wet mass of 134 kg (TBR)	Ensure that Probe structural design can support the heaviest possible probe.	M-45
Swales	Lashley	WBS-2.2.2	P.B.Mec-9	4-Subsystem	Mass properties	The structural mass of any Probe shall be less than the mass in Table XX (TBR)	Mass allocation	PB-10
Swales	Lashley	WBS-2.2.2	P.B.Mec-10	4-Subsystem	Mass properties	The deviation in launch mass from Probe to Probe shall be less than 5% (TBR)	Simplify spin balancing of Probe Carrier assembly and minimize needed balance mass. Ensures symetrical release dynamics.	M-47
Swales	Lashley	WBS-2.2.2	P.B.Mec-11	4-Subsystem	Stiffness	The probe shall be designed to have a fixed base minimum lateral fundamental frequency of 35 Hz (TBR).	Avoid coupling between Probe and Probe Carrier structuraldynamics	M-46
PB The	rmal (PB.Thm-	#)						
Swales	Zara	WBS-2.2.2	PB.Thm-1	4-Subsystem	Thermal Operating Limits	The spacecraft TCS shall keep all bus components within operating temperatures (provided in Table T1) when powered on.	Components need to be at a certain temperature to operate within specification.	PB-17
Swales	Zara	WBS-2.2.2	PB.Thm-2	4-Subsystem	Thermal Survival Limits	The spacecraft TCS shall keep all bus components within survival temperatures (provided in Table T1) when powered off.	Components need to be at a certain temperature to prevent any damage to that component.	PB-16
Swales	Zara	WBS-2.2.2	PB.Thm-3	4-Subsystem	Worst-case cold condition	The Probe Bus TCS shall maintain temperature limits worst case eclipse time of 180 minutes	Analysis shows that the current system design is power limited while in eclipse, causing temperatures to drop to an unacceptable level after the time specified.	PB-7
Swales	Zara	WBS-2.2.2	PB.Thm-4	4-Subsystem	Transmitter on time	The Probe thermal design shall allow for a minimum of 30 minutes transmitter on time per 24 hours.	Thermal has to design for at least 30 min. of heat from the transponder, but can set limits on operations on how frequently each pass can take place.	PB-35
Swales	Zara	WBS-2.2.2	PB.Thm-5	4-Subsystem	Operational Heaters Duty Cycle	The spacecraft heaters shall operate at less than 50% duty cycle for operational cases.	Provides heater power margin for operational cases	PB-17
Swales	Zara	WBS-2.2.2	PB.Thm-6	4-Subsystem	Survival Heaters Duty Cycle	The spacecraft heaters shall operate at less than 70% duty cycle for survival cases.	Provides heater power margin for survival cases	PB-16
Swales	Zara	WBS-2.2.2	PB.Thm-7	4-Subsystem	Heater Thermostats	There shall be redundant thermostats wired in series to control each heater circuit.	When a thermostat fails, it usually fails closed. The redundant thermostat will maintain control of the heater circuit.	M-5
Swales	Zara	WBS-2.2.2	PB.Thm-8	4-Subsystem	Temperature Monitoring	The spacecraft TCS shall have sufficient temperature sensors (50 per probe TBR) for temperature monitoring and control.	Need to monitor key bus temperatures and instruments to verify the status of the TCS.	PB.CDH-20
Swales	Zara	WBS-2.2.2	PB.Thm-9	4-Subsystem	MLI Venting	MLI blankets shall have venting designed for the LV pressure profile.	Delta II Requirement (adequate venting)	PB-28
Swales	Zara	WBS-2.2.2	PB.Thm-10	4-Subsystem	MLI Vent path	The MLI vent path shall conform to the Contamination Control Plan.	Control contamination paths.	PB-22
Swales	Zara	WBS-2.2.2	PB.Thm-11	4-Subsystem	MLI Grounding	MLI blankets shall have electrical grounding with a maximum value of 10 ohms (TBR)	Protects components from Electro Static Discharge	PB-21
Swales	Zara	WBS-2.2.2	PB.Thm-12	4-Subsystem	MLI ESD Coating	Exterior MLI blanket outer layers shall be coated to prevent surface charging per the Electrostatic Cleanliness Plan	Protects Electro Magnetic Interference concerns	PB-21
Swales	Zara	WBS-2.2.2	PB.Thm-13	4-Subsystem	Instrument Heat Transfer	The heat transfer by conduction between instrument components and spacecraft shall be less than .05 W/°C (TBR)	Isolating the instruments from the spacecraft bus will simplify sub- system level testing, reduce bus heater power, and simplifies integrated thermal analysis.	PB-24

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Swales	Zara	WBS-2.2.2	PB.Thm-14	4-Subsystem	Thermal model	Each instrument shall deliver a reduced thermal model to the spacecraft	Temperature predictions rely on an accurate thermal model that	PB-24
					deliverables	prior to PDR, CDR, PER, and PSR.	includes all the instruments.	
Swales	Zara	WBS-2.2.2	PB.Thm-15	4-Subsystem	Minimum Turn on	No Probe Bus component shall be powered on when its temperature is	Components have a minimum temperature when it can be turned on.	PB-18
					Temperature	below the minimum turn-on temperature.		
PB.Hari	ness (PB.Hrn-#	[±])						
Swales	Kraeuter	WBS-2.2.2.2.5	PB.Hrn-1	4-Subsystem	Power & Data	The Probe Bus harness shall provide power and data connections	Generic, Many parents.	N/A
					Harnesses	between the Probe Bus subsystems and the IDPU		

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Probe C	arrier (PC-#)				1			
Swales	ТА	WBS-2.2.4	PC-1	3-Element	System Mass Budget	The Probe Carrier Mass with no Probes Installed shall not exceed 103kg (includes harness)	Based on Delta II throw weight to orbit	M-45
Swales	ТА	WBS-2.2.4	PC-2	3-Element	Allocated Mass Budget	No Probe Carrier subsystem shall exceed the allocated mass budget in Table M1.	Reflects estimated mass plus contingency based on level of design fidelity.	PC-1
Swales	ТА	WBS-2.2.4	PC-3	3-Element	Contamination Control Plan	The Probe Carrier shall comply with the THEMIS Contamination Control Plan	Flow-down	M-37
Swales	ТА	WBS-2.2.4	PC-4	3-Element	ICD	The Probe Carrier shall be compatible per the Probe-Probe Carrier ICD	Adherence to ICDs ensures interface requirements are met	M-39
Swales	ТА	WBS-2.2.4	PC-5	3-Element	ICD	The Probe Carrier shall be compatible per the Probe Carrier-Launch Vechicle ICD	Adherence to ICDs ensures interface requirements are met	M-39
Swales	ТА	WBS-2.2.4	PC-6	3-Element	Environments	The Probe Carrier shall survive and function prior, during and after exposure to the environments described in the Verification Plan and Environmental Specification.	Flow-down	M-41
Swales	ТА	WBS-2.2.4	PC-7	3-Element	PCA Fundamental Frequency	The fundamental frequency of the Probe Carrier Assembly (Probe Carrier + 5 Fueled Probes) in launch configuration shall be greater than 15 Hz in lateral and 35 Hz in axial.	Flow-down	M-46
Swales	ТА	WBS-2.2.4	PC-8	3-Element	PCA CG Location	The CG location of the Probe Carrier Assembly (Probe Carrier + 5 Fueled Probes) shall be within TBD of the PCA centerline.	Flow-down	M-47
Swales	ТА	WBS-2.2.4	PC-9	3-Element	PCA/Probe Deployments	The Probe Carrier shall be designed to prevent collisions (probe-to- probe, probe-to-carrier).	Collision are bad.	M-43
PC Mec	hanical (PC.Me	ec-#)						
Swales	Lashley	2.2.2.3	P.C.Mec-1	4-Subsystem	Accommodations	The Probe / Carrier shall accommodate 5 probes of the maximum mass allocation, with a minimum static clearance of 4 inches (TBR) between adjacent Probes	Derived based on clearance required to reduce collision risk on deployment	PC-9
Swales	Lashley	2.2.2.3	P.C.Mec-2	4-Subsystem	Deployment	The Probe Carrier shall reliably release all 5 probes with a minimum clearance between Probes (at any time after release) of TBD in. Release shall be accomplished with the Probe Carrier spin rate uncertainty of +/-5 rpm.	Ensure that PC spin rate is accommodated and there is no collision after release.	PB-39
Swales	Lashley	2.2.2.3	P.C.Mec-3	4-Subsystem	Deployment Fault Tolerance	The Probe Carrier shall successfully deploy any four Probes if one Probe fails to deploy.	Avoid single point mission failure	M-5
Swales	Lashley	2.2.2.3	P.C.Mec-4	4-Subsystem	Deployment Synchronization	The timing error for simultaneous deployments shall be less than 1 sec.	Analysis shows that simultaneous deployment is necessary to reduce collision risk	PC-9
Swales	Lashley	2.2.2.3	P.C.Mec-5	4-Subsystem	Deployment Time	The Probes shall be released from the Probe Carrier within TBD seconds of receiving the deployment signal from the launch vehicle	Release before 3rd stage begins to tumble - reduce collision risk	PC-9
Swales	Lashley	2.2.2.3	P.C.Mec-6	4-Subsystem	LV Interface	The Probe Carrier Assembly (Probe Carrier, with all 5 Probes installed), shall interface with the Delta 2 third stage and fit within the shroud envelope.	Delta requirement	M-43
Swales	Lashley	2.2.2.3	P.C.Mec-7	4-Subsystem	LV Spin Rate	The Probe Carrier Assembly (Probe Carrier, with all 5 Probes installed) in the launch configuration shall survive a maximum Launch Vehicle spin rate of 65 rpm.	Delta requirement	M-43
Swales	Lashley	2.2.2.3	P.C.Mec-9	4-Subsystem	Mass properties	The Probe Carrier Assembly (Probe Carrier, with all 5 Probes installed) shall be balanced to produce a 3 sigma maximum CG within 1.3 mm (0.05 in) of the centerline.	Delta requirement	M-47
Swales	Lashley	2.2.2.3	P.C.Mec-10	4-Subsystem	Mass properties	The Probe Carrier Assembly (Probe Carrier, with all 5 Probes installed) shall be balanced to produce a 3-sigma maximum principal axis misalignment less than 0.25 deg with respect to the PCA Z axis.	Delta requirement	M-47
Swales	Lashley	2.2.2.3	P.C.Mec-11	4-Subsystem	Mass properties	The Probe Carrier Assembly (Probe Carrier, with all 5 Probes installed) shall have a roll MOI > 515 kg-m ² (TBR)	Delta requirement	M-47
Swales	Lashley	2.2.2.3	P.C.Mec-12	4-Subsystem	Servicing	It shall be possible to remove any Probe from the PC while the PC is on the launch vehicle (TBR)	Allows servicing of component failures during final integration	
PC The	mal (PC.Thm-	#)			·			
Swales	Zara	WBS-2.2.4	PC.Thm-1	4-Subsystem	Thermal Control System	The Probe Carrier shall have a passive Thermal Control System (TCS).		
Swales	Zara	WBS-2.2.4	PC.Thm-2	4-Subsystem	Worst Case Conditions	The Probe Carrier TCS shall be designed for worst case hot and cold thermal environments.		
Swales	Zara	WBS-2.2.4	PC.Thm-3	4-Subsystem	Aerodynamic Heating	The Probe Carrier TCS shall be designed for worst case aerodynamic heating environments.		

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID				
Swales	Zara	WBS-2.2.4	PC.Thm-4	4-Subsystem	Interface Temperature	The Probe Carrier TCS with 5 Probes installed shall maintain Probe						
					Limits	Carrier to Probe interface temperatures within Probe survival limits						
						during ground/launch/ascent and Probe pre-release from Probe Carrier.						
PC Har	PC Harness (PC.Hrn-#)											
Swales	Ajluni	WBS-2.2.4	PC.Hrn-1	4-Subsystem	Routing	The Probe Carrier harness shall connect the Launch Vehicle to each	The Probe Carrier does not contain any electronics, and only serves to)				
						Probe.	hold and connect each probe to the LV.					
PC ACS	(PC.ACS-#)											
Swales	Ajluni	WBS-2.2.4	PC.ACS-1	4-Subsystem	Spin Stability	TBD						

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Ground	Station (GS.S	TN-#)						
UCB	MB	WBS 3.1	GS.STN-1	4-Subsystem	Compatibility	The THEMIS ground stations shall be RF and data compatible with the space segment on both the telemetry and the command link.	Ensures telemetry can be recovered and probes can be commanded.	
UCB	MB	WBS 3.1	GS.STN-2	4-Subsystem	Decoding	The THEMIS ground stations shall perform Viterbi decoding and Reed- Solomon error correction on the telemetry stream.	With the appropriate link margin, error detection and correction will ensure a telemetry bit error rate of 10-6.	
UCB	MB	WBS 3.1	GS.STN-3	4-Subsystem	Telemetry Link	The THEMIS ground stations shall be able to close the telemetry link at various data rates commensurate with probe range with a link margin of at least 3 dB.	Maximize probe bus and instrument data recovery as function of probe range out to 31.6 Re. Allow for telemetry reception at low data rate to support maneuvers and contingency operations.	
UCB	MB	WBS 3.1	GS.STN-4	4-Subsystem	Data Volume	The THEMIS ground stations shall recover a telemetry data volume of 591 Mbits / orbit / probe.	Ensures that sufficient telemetry bandwidth is available to recover both science and engineering data.	1
UCB	МВ	WBS 3.1	GS.STN-5	4-Subsystem	Virtual Channel IDs	The THEMIS ground stations shall split received telemetry data by Virtual Channel ID, record all data locally and route real-time data to command and control workstations via network connections.	Data stream is split for probe bus and science data processing as well as real-time command and control.	
UCB	MB	WBS 3.1	GS.STN-6	4-Subsystem	Data Buffer	The THEMIS ground stations shall buffer recovered telemetry data for at least 10 days.	Temporary backup storage in case network links are down.	
UCB	MB	WBS 3.1	GS.STN-7	4-Subsystem	Command Link	The THEMIS ground stations shall provide command capabilities to allow closure of the command link out to 31.6 Re with a link margin of at least 3 dB.	Ensures that sufficient effective radiated power is available to close the command link at a data rate of 1 kbps with a bit error rate of 10-7.	•
UCB	MB	WBS 3.1	GS.STN-8	4-Subsystem	Acquisition Sweep	The THEMIS ground stations shall acquire the command link using a STDN compatible acquisition sweep procedure.	Driven by probe transponder and common ground station characteristics.	
UCB	MB	WBS 3.1	GS.STN-9	4-Subsystem	COP-1 Protocol	The THEMIS ground stations shall support the COP-1 protocol for command verification.	Ground stations receive telecommands from ITOS in form of CLTUs and forward these to the probes. Likewise, real-time telemetry transfer frames are forwarded from the probes to ITOS to close the command verification loop.	
UCB	MB	WBS 3.1	GS.STN-10	4-Subsystem	Doppler Format	All THEMIS ground stations shall provide two-way Doppler tracking data in Universal Tracking Data Format (UTDF).	Two-way Doppler tracking data are required for orbit determination.	-
UCB	MB	WBS 3.1	GS.STN-11	4-Subsystem	Data Transfer	The THEMIS ground stations shall transfer all tracking data to the THEMIS Mission Operations Center post-pass for orbit determination.	Primary orbit determination will be performed at the MOC using GTDS.	
UCB	MB	WBS 3.1	GS.STN-12	4-Subsystem	Ranging	The Berkeley Ground Station shall be the primary ground station for THEMIS and shall be equipped with additional hardware and software systems to provide two-way digital range tracking data.	Technology demonstration of enhanced orbit determination capabilities for future constellation missions. SatTrack Orbit Determination Tool wi be used to process two-way Doppler and two-way ranging data simultaneously.	; //
Mission	Operations C	enter (GS.MOC-#	()					
UCB	MB	WBS 3.1	GS.MOC-1	4-Subsystem	Integrated MOC	All aspects of THEMIS Mission Operations shall be performed at the Mission Operations Center, located at UCB / SSL.	Integrated Mission Operations Center reduces overall ground systems complexity.	
UCB	MB	WBS 3.1	GS.MOC-2	4-Subsystem	MOC Infrastructure	The Mission Operations Center shall provide hardware, software and IT networking systems to support all mission operations functions.	Provides infrastructure to perform all tasks required to operate the five probes and to recover all science and engineering data via primary and secondary ground stations.	k
UCB	MB	WBS 3.1	GS.MOC-3	4-Subsystem	Data Flow	The Mission Operations Center shall interface with other THEMIS ground system elements such as the ground stations, the TDRSS Ground Terminal and the Science Operations Center.	Ensures seamless data flow from the probes to all required ground system elements and vice versa, and exchange of all required data products.	
UCB	MB	WBS 3.1	GS.MOC-4	4-Subsystem	End-to-End Testing	The Mission Operations Center shall provide secure data interfaces to allow for remote probe operation and end-to-end data flow testing during mission integration.	Allow for end-to-end data compatibility testing, telemetry page development, simulations and operator training.	
UCB	MB	WBS 3.1	GS.MOC-5	4-Subsystem	Voice Loops	The Mission Operations Center shall provide two SCAMA voice loops to allow for communications with other facilities supporting the mission.	Provide voice loops for end-to-end data flow test coordination, pre- launch simulations, launch and ground station support.	
UCB	MB	WBS 3.1	GS.MOC-6	4-Subsystem	Security	The Mission Operations Center shall adhere to NASA IT Network Security standards.	Ensures that space and ground systems are protected against unauthorized physical and network access (applies to THEMIS and other supported missions).	
Mission	Derations (C	SS.OPS-#)	·		·			
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	THEMIS Mission Operations shall support all phases of the mission.	Mission operations include pre-launch, launch and early orbit, normal, contingency and end-of-life operations.	
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	A complete set of ephemeris and mission planning products shall be generated to support all mission planning functions, ground contact scheduling and generation of command loads for all probes.	Generate all products based on latest state vector for each probe.	

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	Mission planning functions shall ensure that all probes are configured	Maintain optimum operational status of all probes and ensure that	
						and operated according to specifications, and yield optimum science	science requirements are met.	
						data while preserving fuel and maintaining adequate margins and probe		
						health.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	Probe state-of-health shall be monitored during real-time pass supports.	Monitor probe state-of-health throughout the entire orbit.	
						Post-pass telemetry playback shall be used to examine back-orbit data		
						for limit violations.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	Mission operations shall include data trending to establish baseline	Provide operational baseline and prevent risk to flight hardware due to	
						parameters and to uncover any developing anomalous conditions early	out-of-limit operation.	
						on.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	Command loads generated on the ground shall be verified prior to	Ensure correct probe operation and reduce operational risk.	
						upload.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	All critical commands, table loads and flight software patches shall be	Minimize risk to flight hardware and software.	
						verified on the probe simulator prior to upload.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	The orbit of each probe shall be determined with an accuracy of 10 km	Adequate accuracy for ground antenna pointing and science	
						at perigee and 100 km at apogee based on two-way Doppler tracking	requirements.	
						data.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	All orbit maneuvers shall be carefully planned and validated prior to	Ensure that critical maneuver commands are correct and yield the	
						execution.	desired orbit change at minimum fuel consumption.	
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	Attitude determination of all probes shall be ground based and shall be	Ground based attitude determination is part of the Attitude Control	
						based on raw Sun sensor and FGM data. FGM data recorded near	System.	
						perigee shall be used to cross-calibrate the Sun sensor on each probe.		
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	All attitude maneuvers shall be carefully planned and validated prior to	Ensure that critical maneuver commands are correct and yield the	
						execution.	desired attitude change at minimum fuel consumption.	
UCB	MB	WBS 3.1	GS.OPS-1	4-Subsystem	Mission Support	Probe anomaly resolution shall be conducted in consultation with	Recover probe bus and instruments to a safe operating state as	
						pertinent subsystem engineers, instrument scientists and project	quickly and efficiently as possible.	
						management personnel.		
Scienc	ce Operation	s Center (GS.SO	C-#)					
UCB	MB	WBS 3.2	GS.SOC-1	4-Subsystem	Level 0 Data	Downlinked data files shall be stripped of Virtual Channels and filed by	Level 0 to Level 1 Data Processing	S-20
					Processing	Application Identifier (APID)		
UCB	MB	WBS 3.2	GS.SOC-2	4-Subsystem	Level 1 Data	The SOC shall produce summary plots for viewing and downloading	IDL routines produce GIF and Common Data Format (CDF) files used	S-20
					Processing	from WWW.	for summary plots	
UCB	MB	WBS 3.2	GS.SOC-3	4-Subsystem	Data Archival - Probe	All raw and processed data (Level 0 and 1) shall be archived to disk		S-20
					Data	array and DVD: Data Volume ~100 Gbytes/year (all probes)		
UCB	MB	WBS 3.2	GS.SOC-4	4-Subsystem	Data Archival - Ground	GBO data sets shall be mirrored from University of Calgary and		S-20
					Data	University of Alberta: Data Volume ~2 Tbytes/year (all sites)		
UCB	MB	WBS 3.2	GS.SOC-5	4-Subsystem	Data Distribution	DVDs shall be distributed to NSSDC and Co-I Institutions		S-20
UCB	MB	WBS 3.2	GS.SOC-6	4-Subsystem	Data Access - Full	Complete spacecraft data set shall be accessible from local disk array		S-17
					Data Set	at UCB		
UCB	MB	WBS 3.2	GS.SOC-7	4-Subsystem	GBO Data Access	GBO data shall be accessed from UC and UA mirror site		S-17
UCB	MB	WBS 3.2	GS.SOC-8	4-Subsystem	Data Validation	Data shall be validated on a daily basis by designated operations	Assures data quality, monitors housekeeping data trends, identifies	S-14
						scientist	and tabulates geophysical events of special interest	
UCB	MB	WBS 3.2	GS.SOC-9	4-Subsystem	Data Analysis Platform	Data shall be portable to variable platforms - PC and UNIX	Project decision that data should not necessarily have to go through	S-17
							SDT	
UCB	MB	WBS 3.2	GS.SOC-10	4-Subsystem	Instrument	The SOC will using modified version of existing FAST system for stored	Similar heritage system will be used for THEMIS	
					Commanding	instrument command loads		
UCB	MB	WBS 3.2	GS.SOC-11	4-Subsystem	Instrument Command	Instrument command loads shall be transferred to MOC for integration		
1	1			1	Uplink	into overall spacecraft load and uplink to spacecraft		

Ora.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID
Ground	Based Obser	vations (GB-#)						
UCB	SH	WBS 3.3	GB-1	3-Element	GBO Science Objective	GBO shall monitor the auroral light and ionospheric currents across North America in order to localize the time, location, and evolution of the auroral manifestation of the substorm.	Addresses mission requirement to determine substorm onset time and substorm meridian magnetic local time (MLT) using ground ASIs (one per MLT hr) and GMAGs (two per MLT hr) with t_res<30s and dMLT<6 degrees respectively, in an 8hr geographic local time sector including the US.	S-1
UCB	SH	WBS 3.3	GB-2	3-Element	Local Time Duration	The GBO shall cover 8 hrs of Geographic Local Time over North American segment (allows continuous 12 hr conjunctions with probes)	Derived Requirement from GBO objective	GB-1
UCB	SH	WBS 3.3	GB-3	3-Element	Number of ASI	The GBO shall include at least one ASI per MLT hour within this geographic segment	Derived Requirement from GBO objective	GB-1
UCB	SH	WBS 3.3	GB-4	3-Element	Number of GMAG	The GBO shall include two auroral GMAG per hour (MLT) (high/low lat.) within this segment.	Derived Requirement from GBO objective	GB-1
UCB	SH	WBS 3.3	GB-5	3-Element	Timing Accuracy	Timing accuracy of phenomena observed shall be better than 10s absolute	Derived Requirement from GBO objective	GB-1
UCB	SH	WBS 3.3	GB-6	3-Element	ASI Sensitivity	Detectable response for aurora shall be < 10kRayleigh	Derived Requirement from GBO objective	GB-1
UCB	SH	WBS 3.3	GB-7	3-Element	GMAG Sensitivity	Sensitivity of GMAG instrument shall be < 1nT	Derived Requirement from GBO objective	GB-1
UCB	SH	WBS 3.3	GB-8	3-Element	Site Preparation	Integrate ASI from UCB, GMAG from UCLA with site prep and deployment provided by UCalgary	Implementation Requirement	
UCB	SH	WBS 3.3	GB-9	3-Element	Schedule for qual unit	Build, calibrate and qualify first unit within one year after start of Phase B	Implementation Requirement	
UCB	SH	WBS 3.3	GB-10	3-Element	Schedule for first flight units	Five sites shall be installed two winters before THEMIS launch	Implementation Requirement	
UCB	SH	WBS 3.3	GB-11	3-Element	Number of Sites	Total GBO installed network shall be 20 sites, located across Alaska and Canada.	Implementation Requirement	
GBO- A	Il Sky Imager	(GB.ASI-#)						
UCB	SH	WBS 3.3	GB.ASI-1	4-Subsystem	FOV	Field of view shall be greater than 170°		GB-3
UCB	SH	WBS 3.3	GB.ASI-2	4-Subsystem	Spectral Bandpass	Spectral passband shall include all visible wavelengths (400 - 700nm)		GB-3
UCB	SH	WBS 3.3	GB.ASI-3	4-Subsystem	Sensitivity	Sensitivity: Detectable response for aurora < 10kRayleigh		GB-6
UCB	SH	WBS 3.3	GB.ASI-4	4-Subsystem	Spatial resolution	Spatial resolution shall be better than TBD pixels per all sky image diameter		GB-3
UCB	SH	WBS 3.3	GB.ASI-5	4-Subsystem	Viewport	Shall have heated dome viewport		GB-11
UCB	SH	WBS 3.3	GB.ASI-6	4-Subsystem	Programmable exposure time	Shall have programmable exposure time		GB-5
UCB	SH	WBS 3.3	GB.ASI-7	4-Subsystem	Maximum exposure time	Maximum exposure time shall be greater than 1s		GB-5
UCB	SH	WBS 3.3	GB.ASI-8	4-Subsystem	Dark Noise	Dark noise resulting from maximum exposure shall be less than TBD		GB-5
UCB	SH	WBS 3.3	GB.ASI-9	4-Subsystem	Programmable repetition interval	Shall have programmable exposure repetition interval		GB-5
UCB	SH	WBS 3.3	GB.ASI-10	4-Subsystem	Minimum repetition interval	Minimum repetition interval shall be less than 5s		GB-5
GBO- 0	Fround Magnet	tometer (GB.MAC	<u>3-#)</u>					
UCB	SH	WBS 3.3	GB.MAG-1	4-Subsystem	Sensitivity	Sensitivity shall be < 1nT		GB-7
UCB	SH	WBS 3.3	GB.MAG-2	4-Subsystem	3-axis magnetic sensing	Shall include 3 axes of magnetic sensing		GB-4
UCB	SH	WBS 3.3	GB.MAG-3	4-Subsystem	Dynamic range	Shall provide ±2000nT dynamic range		GB-4
UCB	SH	WBS 3.3	GB.MAG-4	4-Subsystem	Time resolution	Shall provide 1 second time resolution		GB-5
GBO- 0	bservatory (G	B.OBS-#)						
UCB	SH	WBS 3.3	GB.OBS-1	4-Subsystem	Unattended Operation	Shall provide unattended operation for up to 4 months per observation season		GB-2

Org.	Owner	WBS	ID	Level	Title	Statement	Rationale	Parent ID	
UCB	SH	WBS 3.3	GB.OBS-2	4-Subsystem	Programmable	As a goal, provide programmable command interface to upload new		GB-2	
					command I/F	observation parameters and new operating software			
UCB	SH	WBS 3.3	GB.OBS-3	4-Subsystem	Digital I/F	Shall provide digital interface and data storage for ASI and GMAG		GB-2	
UCB	SH	WBS 3.3	GB.OBS-4	4-Subsystem	Geographic position	Shall provide GPS receiver for geographic position calibration and time stamp		GB-2	
UCB	SH	WBS 3.3	GB.OBS-5	4-Subsystem	Daily uplink	Shall provide a means for daily uplink of "stream 1" data		GB-2	
UCB	SH	WBS 3.3	GB.OBS-6	4-Subsystem	Link capacity	As a goal, stream 1 link capacity (including all stations) should be greater than 39Mbits per day per station		GB-2	
UCB	SH	WBS 3.3	GB.OBS-7	4-Subsystem	Storage	Shall store high resolution, "stream 2", data locally on HD, minimum 63GB/season		GB-2	
UCB	SH	WBS 3.3	GB.OBS-8	4-Subsystem	Electrical compatibility	Shall be compatible with locally provided power		GB-2	
UCB	SH	WBS 3.3	GB.OBS-9	4-Subsystem	Controlled environment	Shall provide controlled environment enclosure for ASI, GMAG and local electronics		GB-2	
UCB	SH	WBS 3.3	GB.OBS-10	4-Subsystem	Mechanical compatibility	Shall be compatible with ASI dome, and provide required level of heated air flow		GB-2	
UCB	SH	WBS 3.3	GB.OBS-11	4-Subsystem	Internal temperature limits	Maintain internal ambient temperature at 25° ± 15°C		GB-2	
UCB	SH	WBS 3.3	GB.OBS-12	4-Subsystem	External temperature limits	Operate in external ambient temperature range of -60° to +50°C including solar load		GB-2	
UCB	SH	WBS 3.3	GB.OBS-13	4-Subsystem	Ruggedized enclosure	Provide suitably rugged enclosure, stable mounting and shock protection		GB-2	
UCB	SH	WBS 3.3	GB.OBS-14	4-Subsystem	Power control	Shall provide controlled power-up and power-down automatically		GB-2	
GBO- Ground Site (GB-GnS)									
UCB	SH	WBS 3.3	GB.GnS-1	4-Subsystem	Unobstructed viewing	Shall provide a largely unobstructed viewing over 160° hemisphere		GB-11	
UCB	SH	WBS 3.3	GB.GnS-2	4-Subsystem	Magnetic interference	Shall provide site that is clear of magnetic interference		GB-11	
UCB	SH	WBS 3.3	GB.GnS-3	4-Subsystem	Power service	Shall provide power, 120 V, 60Hz at TBD A service		GB-11	
UCB	SH	WBS 3.3	GB.GnS-4	4-Subsystem	Maintenance	Shall provide field operator for periodic maintenance and "stream 2" data retrieval		GB-11	