;+
; Procedure: minvar.pro
; This program computes the principal variance directions and variances of a
; vector quantity (can be 2D or 3D) as well as the associated
; eigenvalues.  This routine is a simple version
; designed to be used by a tplot wrapper with the contrans_var library
; Works with trired and triql (IDL's version of Num. Recipies w/ permission)
;
; Input: Vxyz, an (ndim,npoints) array of data(ie 3xN)
; Output: eigenVijk, an (ndim,ndim) array containing the principal axes vectors
;         Maximum variance direction eigenvector, Vi=eigenVijk(*,0)
;         Intermediate variance direction, Vj=eigenVijk(*,1) (descending order)
;
;         Vrot: if set to a name, that name becomes an array of (ndim,npoints)
;         containing the rotated data in the new coordinate system, ijk.
;         Vi(maximum direction)=Vrot(0,*)
;         Vj(intermediate direction)=Vrot(1,*)
;         Vk(minimum variance direction)=Vrot(2,*)
;
;         lambdas2=if set to a name returns the eigenvalues of the
;         computation
;
;
;Written by: Vassilis Angelopoulos
;
;
; $LastChangedBy: pcruce $
; $LastChangedDate: 2008-03-05 19:13:27 -0800 (Wed, 05 Mar 2008) $
; $LastChangedRevision: 2452 $
; $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/ssl_general/tags/tdas_5_00/cotrans/special/minvar/minvar.pro $
;
;-

pro minvar,Vxyz,eigenVijk,Vrot=Vrot,lambdas2=lambdas2

vec=double(Vxyz)
npnts=n_elements(Vxyz(0,*))
vecavg=vec(*,0) & vecavg(*)=!VALUES.F_NAN
mvamat=make_array(3,3,/double,value=!VALUES.F_NAN)

for i = 0, 2 do vecavg(i) = total(Vxyz(i,*))/npnts

; build matrix
for i = 0, 2 do begin
   mvamat(i,0) = total(vec(i,*)*vec(0,*))/npnts - vecavg(i)*vecavg(0)
   mvamat(i,1) = total(vec(i,*)*vec(1,*))/npnts - vecavg(i)*vecavg(1)
   mvamat(i,2) = total(vec(i,*)*vec(2,*))/npnts - vecavg(i)*vecavg(2)
endfor


eigenVijk=mvamat
trired,eigenVijk,diagonal,offdiagonal,/double
triql,diagonal,offdiagonal,eigenVijk,/double

diagonal=abs(diagonal)

index=reverse(sort(diagonal)) ; descending order: min var last
diagonal=diagonal(index)
eigenVijk=eigenVijk(*,index)

; Rotate intermediate var direction if system is not Right Handed
YcrosZdotX=eigenVijk(0,0)*(eigenVijk(1,1)*eigenVijk(2,2)-eigenVijk(2,1)*eigenVijk(1,2))
if (YcrosZdotX lt 0.) then eigenVijk(*,1)=-eigenVijk(*,1)

; Ensure minvar direction is along +Z (for FAC system)
if (eigenVijk(2,2) lt 0) then begin
  eigenVijk(*,2)=-eigenVijk(*,2)
  eigenVijk(*,1)=-eigenVijk(*,1)
endif

; Rotate data into minvar coords
Vrot=vec & Vrot(*,*)=!VALUES.F_NAN

Vrot(0,*)=eigenVijk(0,0)*vec(0,*) + eigenVijk(1,0)*vec(1,*) + eigenVijk(2,0)*vec(2,*)
Vrot(1,*)=eigenVijk(0,1)*vec(0,*) + eigenVijk(1,1)*vec(1,*) + eigenVijk(2,1)*vec(2,*)
Vrot(2,*)=eigenVijk(0,2)*vec(0,*) + eigenVijk(1,2)*vec(1,*) + eigenVijk(2,2)*vec(2,*)


lambdas2=diagonal

return

end