This page was created by the IDL library routine
mk_html_help2
.
Last modified: Wed Jun 12 10:49:46 2024.
:Description: Perform a spectral analysis following Di Matteo, S., Viall, N., Kepko, L. (2020), "Power Spectral Density Background Estimate and Signals Detection via the Multitaper Method." Journal of Geophysical Research Space Physics. PSD stands for Power Spectral Density :Params: INPUTS: data - 2 column data: [time vector, time series] N.B. The average value of the data is removed by default. If the data are not evenly sampled, the average time step is used when it is lower than its standard deviation. NW - time-halfbandwidth product, DEFAULT: NW = 3 Ktpr - Number of tapers to apply, DEFAULT: Ktpr = 2*NW - 1 padding - Amount of padding to apply (proportional to the original data) DEFAULT: padding=1 so that the frequency step (df) equals the Rayleigh frequency [1/(N*dt)] dpss - structure with tapers and eigenvalues evaluated by spd_mtm_dpss.pro or previous call of spd_mtm.pro flim - limits in percentages of the frequency range to be analyzed, DEFAULT: [df,fny-df], where fny is the Nyquist frequency [1/(2*dt)] smoothing - possible smoothing: 'raw'(0) no smoothing (DEFAULT) 'med'(1) running median 'mlog'(2) running median (constant window on log(f) ) 'bin'(3) binned PSD 'but'(4) low pass filtered PSD (Butterworth filter) 'all'(9) use all the smoothing procedures psmooth - value between (0,0.5] defining the "smoothing window" psmooth=2 -> search the optimum window according to the Kolmogorov-Smirnov test (DEFAULT) model - implemented models: 'wht'(0) white noise, [N] 'pl'(1) power law, [N, beta] 'ar1'(2) first order autoregressive process, [N, rho] 'bpl'(3) bending power law, [N, beta, gamma, fb] (DEFAULT) 'all'(9) use all the models procpeak - possible choices: '' do not search for peaks 'gt'(0) gamma test only 'ft'(1) F test only 'gft'(2) gamma and F test 'gftm'(3) only max F value for each PSD enhancement 'all'(9) use all the selection procedures (DEFAULT) conf - confidence levels in increasing order (DEFAULT is conf=[0.90,0.95,0.99]) resh - value between (0,1.0], reshape the PSD from peaks identified according to the 'gft' procedure at the "resh" confidence level (DEFAULT: resh=0, do not perform the reshaping) gof - PSD background chosing criterium: 'MERIT' - MERIT function (DEFAULT) 'CKS' - Kolmogorov-Smirnov test 'AIC' - Akaike Information Criteria x_label - label for x-axis or defined set of choice (default choice 'Time', see spd_mtm_makeplot.pro) x_units - x variable unit of measures y_units - y variable unit of measures f_units - "frequency" variable unit of measures x_conv - conversion factor for the x variable (N.B. IS UP TO THE USER TO BE CONSISTENT WITH X_UNITS) f_conv - conversion factor for the "frequency" variable (N.B. IS UP TO THE USER TO BE CONSISTENT WITH F_UNITS) OUTPUTS: spec. .ff Fourier frequencies .raw adaptive multitaper PSD .back best PSD background among the probed ones .ftest values of the F test .resh reshaped PSD (if resh in spd_mtm is imposed) .dof degree of freedom at each Fourier frequency .fbin binned frequencies for the bin-smoothed PSD .smth smoothed PSD, spec.smth[#smth, *]: #smth = 0->'raw'; 1->'med'; 2->'mlog', 3->'bin'; 4->'but' .modl PSD background models, spec.modl[#smth, #modl, *]: #modl = 0->'wht'; 1->'pl'; 2->'ar1'; 3->'bpl' .frpr model parameters resulting from the fitting procedures spec.frpr[#smth, #modl, #par]: #par = 0->'c'; 1->'rho' or 'beta'; 2->'gamma'; 3->'fb' .conf confidence threshold values for the PSD (gamma test) .fconf confidence threshold values for the F statistic (F test) .CKS C_KS value for each probed model spec.CKS[#smth, #modl] .AIC AIC value for each probed model spec.AIC[#smth, #modl] .MERIT MERIT value for each probed model spec.MERIT[#smth, #modl] .Ryk real part of the eigenspectra spec.Ryk[#Ktpr,*] .Iyk imaginary part of the eigenspectra spec.Iyk[#Ktpr,*] .psmooth percentage of the frequency range defining the smoothing window spec.psmooth[#smth] .muf complex amplitude at each Fourier frequency .indback indices of the selected PSD background; smoothing/model = spec.indback[0]/spec.indback[1] .poor_MTM flag for failed convergence of the adaptive MTM PSD peak. .ff Fourier frequencies .pkdf for each peak selection method and confidence level a value greater than zero at a specific frequency indicate the occurence of a signal at that frequency: peak.pkdf[#peakproc, #conf, #freq] 'gamma test' -> peak.pkdf[0,*,*] contains the badwidth of the PSD enhancements at the identified frequencies 'F test', 'gft', and 'gftm' -> peak.pkdf[1:3,*,*] is equal to par.df at the identified frequencies par. .npts time series number of points .dt average sampling time .dtsig standard deviation of the sampling time .datavar variance of the time series .fray Rayleigh frequency: fray = 1/(npts*dt) .fny Nyquist frequency: fny = 1/(2*dt) .npad time series number of points after padding .nfreq number of frequencies .df frequency resolution (after padding), it corresponds to the Rayleigh frequency for no padding (padding = 1) .fbeg beginning frequency of the interval under analysis .fend ending frequency of the interval under analysis .psmooth value imposed in spd_mtm .conf confidence thresholds percentages .NW time-halfbandwidth product .Ktpr number of tapers (max value is 2*NW - 1) .tprs discrete prolate spheroidal sequences (dpss) .v dpss eigenvalues ipar. .hires keyword /hires is selected (1) or not (0) .power keyword /power is selected (1) or not (0) .specproc array[#smth,#modl] smoothing and model combinations 1 (0) the smoothing + model combination is (not) probed .peakproc array[4] referring to 'gt', 'ft', 'gft', and 'gftm' 1 (0) peaks according to this procedure are (not) saved .allpkwd keyword /allpeakwidth is selected (1) or not (0) .pltsm keyword /pltsmooth is selected (1) or not (0) .resh confidence threshold percentage chosen to select the PSD enhancements to be removed in the PSD reshaping .gof criterium used to select the PSD background rshspec provide the spec structures based on the reshaped PSD (If it is not specified, the results are overwritten on spec) rshpeak provide the peak structures based on the reshaped PSD (If it is not specified, the results are overwritten on peak) :Keywords: /hires - spec.raw is the high-resolution PSD estimate /power - spec.raw is the integrated PSD: df*PSD [##^2] /quiet - do not display parameters and results /allpeakwidth - no constrains on the PSD enhancements width /pltsmooth - plot only the smoothed PSDs and stop /makeplot - plot the results /double - output in double precision :Uses: spd_mtm_dpss.pro spd_mtm_spec.pro spd_mtm_regre.pro spd_mtm_smoothing.pro spd_mtm_fitmodel.pro spd_mtm_modelgof.pro spd_mtm_conflvl.pro spd_mtm_findpeaks.pro spd_mtm_reshape.pro spd_mtm_dispar.pro spd_mtm_dbl2flt.pro spd_mtm_makeplot.pro :Example: t = [0:511] ; time vector, suppose dt = 1s x = 0.5*cos(2.0*!pi*t/8.0) + randomn(3,512,1) ; time series data = [[t],[x]] spd_mtm, data=data, NW=3, Ktpr=5, padding=1, dpss=dpss, $ flim=[0,1], smoothing=’all’, psmooth=2, $ model=’wht’, procpeak=[’gt’,'gft'], $ conf=[0.90,0.95d], $ /makeplot, $ x_label=’Time’, y_units=’##’, $ x_units=’min’, x_conv=1.0/60.0, $ f_units=’mHz’, f_conv=1d3, $ spec=spec, peak=peak, par=par, ipar=ipar ; plot the adaptive MTM PSD plot(spec.ff, spec.raw, /ylog) ; plot the selected PSD background plot(spec.ff, spec.back, 'r', /overplot) ; plot confidence threshold for the PSD plot(spec.ff, spec.back*spec.conf[0], 'r--', /overplot) ; plot a smoothed PSD ; (N.B. The smoothing approach has to be present the inputs) plot(spec.ff, spec.smth[1,*]) ; med plot(spec.ff, spec.smth[2,*]) ; mlog plot(spec.fbin, spec.smth[3,*]) ; bin plot(spec.ff, spec.smth[4,*]) ; but ; plot a fitted PSD model on a smoothed PSD ; (N.B. The model has to be present the inputs) plot(spec.ff, spec.modl[0,0,*]) ; raw/WHT plot(spec.ff, spec.modl[3,1,*]) ; bin/PL plot(spec.ff, spec.modl[2,2,*]) ; mlog/AR(1) plot(spec.ff, spec.modl[3,3,*]) ; bin/BPL ; to recover the identified peaks: indices_peaks = where(peak.pkdf[0,0,*] gt 0) ; N.B. ; peak.pkdf[0,0,*] -> gamma test, lowest confidence level (from conf) ; peak.pkdf[2,0,*] -> gamma and F test, lowest confidence level (from conf) ; peak.pkdf[0,-1,*] -> gamma test, highest confidence level (from conf) if (indices_peaks[0] ge 0) then begin signals_frequency = peak.ff[indices_peaks] endif :Version: Version 1.0 :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm.pro)
:Description: Evaluate the adaptive multitaper spectrum from Thomson, D. J. (1982). "Spectrum estimation and harmonic analysis." Proceedings of the IEEE,70(9), 1055-1096. doi:10.1109/PROC.1982.12433 :Params: INPUTS: spec.Ryk - real part of the multitaper eigenspectra spec.Iyk - imaginary part of the multitaper eigenspectra par.V - dpss eigenvalues par.Ktpr - number of tapers to be used (max value is 2*NW - 1) par.nfreq - number of frequencies par.datavar - variance of the data ipar.power - keyword /power in spd_mtm is selected (1) or not (0) OUTPUTS: spec.raw - adaptive MTM spectrum spec.dof - degree of freedom at each Fourier frequency spec.poor_MTM - flag for failed convergence :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_adapt.pro)
:Description: Determine the confidence thresholds for the gamma and F test. :Params: INPUTS: par.conf - confidence thresholds percentages par.Ktpr - number of tapers (max value is 2*NW - 1) OUTPUTS: spec.conf - confidence threshold values for the PSD (gamma test) spec.fconf - confidence threshold values for the F statistic (F test) COMMON VARIABLE: gammaj pp - confidence threshold percentage :Uses: spd_mtm_gammaj_cvf.pro :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_confthr.pro)
:Description: Turn the double precision outputs in single precision (float). :Params: INPUTS: spec - structure with results of the spectral analysis (as defined in spd_mtm.pro) par - properties of the time series and parameters defining the spectral analysis (as defined in spd_mtm.pro) peak - identified signals (as defined in spd_mtm.pro) rshspec - spectral analysis results for the reshaped PSD (same structure as spec) rshpeak - signals identified with the reshaped PSD (same structure as peak) :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_dbl2flt.pro)
:Description: Display parameters and results of spd_mtm.pro on IDL console. :Params: INPUTS: smth_label - labels of the smoothing procedures modl_label - labels of the PSD models par.dt - average sampling time par.dtsig - standard deviation of the sampling time par.fray - Rayleigh frequency: fray = 1/(npts*dt) par.fny - Nyquist frequency: fny = 1/(2*dt) par.npts - time series number of points ipar.resh - confidence threshold percentage chosen to select the PSD enhancements to be removed in the PSD reshaping ipar.pltsm - keyword /pltsmooth is selected (1) or not (0) spec.poor_MTM - flag for failed convergence of the adaptive MTM PSD spec.indback - indices of the selected PSD background; smoothing/model = spec.indback[0]/spec.indback[1] spec.frpr - model parameters resulting from the fitting procedures spec.frpr[#smth, #modl, #par]: #par = 0->'c'; 1->'rho' or 'beta'; 2->'gamma'; 3->'fb' :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_dispar.pro)
:Description: Generate the Slepian sequences (or discrete prolate spheroidal sequences, dpss) following the tridiagonal formulation by Percival and Walden (1993) p.386-387. :Params: INPUTS: N - number of data points NW - time-halfbandwidth product Ktpr - number of tapers to be used (max value is 2*NW - 1) OUTPUTS: dpss. .E discrete prolate spheroidal sequences (dpss), eigenvectors .V dpss eigenvalues .N number of data points .NW time-halfbandwidth product .Ktpr number of tapers to be used (max value is 2*NW - 1) :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_dpss.pro)
:Description: Find significant enhancements in the gamma and F test. :Params: INPUTS: spec.ff - Fourier frequencies spec.raw - adaptive multitaper PSD spec.back - best PSD background among the probed ones spec.conf - confidence threshold values for the PSD (gamma test) spec.ftest - values of the F test spec.fconf - confidence threshold values for the F statistic (F test) par.conf - confidence thresholds percentages par.nfreq - number of frequencies par.df - frequency resolution (after padding), it corresponds to the Rayleigh frequency for no padding (padding = 1) par.NW - time-halfbandwidth product par.fray - Rayleigh frequency: fray = 1/(npts*dt) ipar.peakproc - array[4] referring to 'gt', 'ft', 'gft', and 'gftm' 1 (0) peaks according to this procedure are (not) saved ipar.allpkwd - keyword /allpeakwidth is selected (1) or not (0) OUTPUTS: peak. .ff Fourier frequencies .pkdf for each peak selection method and confidence level a value greater than zero at a specific frequency indicate the occurence of a signal at that frequency: peak.pkdf[#peakproc, #conf, #freq] 'gamma test' -> peak.pkdf[0,*,*] contains the badwidth of the PSD enhancements at the identified frequencies 'F test', 'gft', and 'gftm' -> peak.pkdf[1:3,*,*] is equal to par.df at the identified frequencies :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_findpeaks.pro)
:Description: Evaluate the PSD background according to four different models: 'wht'(0) white noise, [c] 'pl'(1) power law, [c, beta] 'ar1'(2) first order autoregressive process, [c, rho] 'bpl'(3) bending power law, [c, beta, gamma, fb] :Params: INPUTS: spec.ff - Fourier frequencies spec.raw - adaptive multitaper PSD spec.dof - degree of freedom at each Fourier frequency spec.smth - smoothed PSD, spec.smth[#smth, *]: #smth = 0->'raw'; 1->'med'; 2->'mlog', 3->'bin'; 4->'but' spec.fbin - binned frequencies for the bin-smoothed PSD spec.psmooth - percentage of the frequency range defining the smoothing window spec.psmooth[#smth] par.nfreq - number of frequencies par.npts - time series number of points par.df - frequency resolution (after padding), it corresponds to the Rayleigh frequency for no padding (padding = 1) par.datavar - variance of the time series par.fny - Nyquist frequency: fny = 1/(2*dt) ipar.specproc - array[#smth,#modl] smoothing and model combinations 1 (0) the smoothing + model combination is (not) probed OUTPUTS: spec.modl - PSD background models, spec.modl[#smth, #modl, *]: #modl = 0->'wht'; 1->'pl'; 2->'ar1'; 3->'bpl' spec.frpr - model parameters resulting from the fitting procedures spec.frpr[#smth, #modl, #par]: #par = 0->'c'; 1->'rho' or 'beta'; 2->'gamma'; 3->'fb' COMMON VARIABLES: max_lklh psd_ml - PSD for the maximum likelihood model fit ff_ml - frequency vector for the maximum likelihood model fit alpha_ml - half degree of freedom of the PSD at each frequency fny - Nyquist frequency itmp - indices of the frequency interval of interest n_itmp - number of frequencies in the interval of interest :Uses: spd_mtm_pl_fun.pro spd_mtm_pl_lglk.pro spd_mtm_pl_norm.pro spd_mtm_ar1_fun.pro spd_mtm_ar1_lglk.pro spd_mtm_ar1_norm.pro spd_mtm_bpl_fun.pro spd_mtm_bpl_lglk.pro spd_mtm_bpl_norm.pro :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_fitmodel.pro)
:Description: Plot the results from spd_mtm.pro. :Params: INPUTS: data - 2 column data: [time vector, time series] = [x, y] N.B. The average value of the data is removed by default. If the data are not evenly sampled, the average time step is used when it is lower than its standard deviation. spec - structure with results of the spectral analysis (as defined in spd_mtm.pro) peak - identified signals (as defined in spd_mtm.pro) par - properties of the time series and parameters defining the spectral analysis (as defined in spd_mtm.pro) ipar - indeces define the procedures for the identification of PSD background and signals (as defined in spd_mtm.pro) x_label - label for x-axis or defined set of choice (default choice 'Time') x_units - x variable unit of measures y_units - y variable unit of measures f_units - "frequency" variable unit of measures x_conv - conversion factor for the x variable (N.B. IS UP TO THE USER TO BE CONSISTENT WITH X_UNITS) f_conv - conversion factor for the "frequency" variable (N.B. IS UP TO THE USER TO BE CONSISTENT WITH F_UNITS) :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_makeplot.pro)
:Description: Determine the best PSD background model according to a statistical criterium among the MERIT, AIC, and C_KS when comparing multiple smoothing+model pairs. :Params: INPUTS: spec.ff - Fourier frequencies spec.raw - adaptive multitaper PSD spec.dof - degree of freedom at each Fourier frequency spec.modl - PSD background models, spec.modl[#smth, #modl, *]: #modl = 0->'wht'; 1->'pl'; 2->'ar1'; 3->'bpl' spec.frpr - model parameters resulting from the fitting procedures spec.frpr[#smth, #modl, #par]: #par = 0->'c'; 1->'rho' or 'beta'; 2->'gamma'; 3->'fb' ipar.specproc - array[#smth,#modl] smoothing and model combinations 1 (0) the smoothing + model combination is (not) probed ipar.gof - criterium used to select the PSD background OUTPUTS: spec.CKS - C_KS value for each probed model spec.AIC - AIC value for each probed model spec.MERIT - MERIT value for each probed model spec.indback - indices of the selected PSD background; smoothing/model = spec.indback[0]/[1] spec.back - best PSD background among the probed model COMMON VARIABLES: max_lklh psd_ml - PSD for the maximum likelihood model fit ff_ml - frequency vector for the maximum likelihood model fit alpha_ml - half degree of freedom of the PSD at each frequency itmp - indices of the frequency interval of interest n_itmp - number of frequencies in the interval of interest :Uses: spd_mtm_cks.pro spd_mtm_wht_lglk.pro spd_mtm_pl_lglk.pro spd_mtm_ar1_lglk.pro spd_mtm_bpl_lglk.pro :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_modelgof.pro)
:Description: Perform the harmonic analysis (F test) according to Thomson, D. J. (1982). "Spectrum estimation and harmonic analysis." Proceedings of the IEEE,70(9), 1055-1096. doi:10.1109/PROC.1982.12433 :Params: INPUTS: spec.Ryk - real part of the eigenspectra spec.Iyk - imaginary part of the eigenspectra par.tprs - discrete prolate spheroidal sequences (dpss) par.Ktpr - number of tapers to be used (max value is 2*NW - 1) par.nfreq - number of frequencies OUTPUTS: spec.ftest - values of the F test spec.muf - complex amplitude at each Fourier frequency :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_regre.pro)
:Description: Reshaping of the power spectral density as described in: Thomson, D. J. (1982). "Spectrum estimation and harmonic analysis." Proceedings of the IEEE,70(9), 1055-1096. doi:10.1109/PROC.1982.12433 :Params: INPUTS: spec - structure with results of the spectral analysis (as defined in spd_mtm.pro) par - properties of the time series and parameters defining the spectral analysis (as defined in spd_mtm.pro) ipar - indeces define the procedures for the identification of PSD background and signals (as defined in spd_mtm.pro) peak - identified signals (as defined in spd_mtm.pro) demean - time series with average value removed OUTPUTS: rshspec - provide the spec structures based on the reshaped PSD rshpeak - provide the peak structures based on the reshaped PSD :Uses: spd_mtm_findpeaks.pro spd_mtm_adapt.pro spd_mtm_smoothing.pro spd_mtm_fitmodel.pro spd_mtm_modelgof.pro spd_mtm_confthr.pro :File_comments: We perform the PSD reshaping removing the contribute of the identified monochromatic signals from the PSD along the entire frequency range. The code for the local reshaping of the PSD, that is in a frequency interval with the same width of the spectral window main lobe, is provided as comment lines. :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_reshape.pro)
:Description: Evaluate the smoothed PSD according to four different approach: 'med'(1) running median 'mlog'(2) running median (constant window on log(f) ) 'bin'(3) binned PSD 'but'(4) low pass filtered PSD (Butterworth filter) :Params: INPUTS: spec.ff - Fourier frequencies spec.raw - adaptive multitaper PSD spec.dof - degree of freedom at each Fourier frequency par.fbeg - beginning frequency of the interval under analysis par.fend - ending frequency of the interval under analysis par.Ktpr - number of tapers (max value is 2*NW - 1) par.psmooth - value imposed in spd_mtm par.nfreq - number of frequencies ipar.specproc - array[#smth,#modl] smoothing and model combinations 1 (0) the smoothing + model combination is (not) probed OUTPUTS: spec.smth - smoothed PSD, spec.smth[#smth, *]: #smth = 0->'raw'; 1->'med'; 2->'mlog', 3->'bin'; 4->'but' spec.fbin - binned frequencies for the bin-smoothed PSD spec.psmooth - percentage of the frequency range defining the smoothing window spec.psmooth[#smth] COMMON VARIABLES: max_lklh psd_ml - PSD for the maximum likelihood model fit ff_ml - frequency vector for the maximum likelihood model fit alpha_ml - half degree of freedom of the PSD at each frequency fny - Nyquist frequency itmp - indices of the frequency interval of interest n_itmp - number of frequencies in the interval of interest gammaj alpha_gj - half degree of freedom of the PSD at each frequency Ktpr - number of tapers (max value is 2*NW - 1) :Uses: spd_mtm_med_ks.pro spd_mtm_med.pro spd_mtm_mlog_ks.pro spd_mtm_mlog.pro spd_mtm_bin_ks.pro spd_mtm_bin.pro spd_mtm_but_ks.pro spd_mtm_but.pro :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_smoothing.pro)
:Description: This procedure evaluates the Power Spectral Density. :Params: INPUTS: data time series par. .npts time series number of points .dt average sampling time .npad time series number of points after padding .nfreq number of frequencies .df frequency resolution (after padding), it corresponds to the Rayleigh frequency for no padding (padding = 1) .psmooth value imposed in spd_mtm .conf confidence thresholds percentages .Ktpr number of tapers (max value is 2*NW - 1) .tprs discrete prolate spheroidal sequences (dpss) .v dpss eigenvalues ipar. .hires keyword /hires is selected (1) or not (0) .power keyword /power is selected (1) or not (0) .specproc array[#smth,#modl] smoothing and model combinations 1 (0) the smoothing + model combination is (not) probed OUTPUTS: spec. .ff Fourier frequencies .raw adaptive multitaper PSD .dof degree of freedom at each Fourier frequency .Ryk real part of the eigenspectra spec.Ryk[#Ktpr,*] .Iyk imaginary part of the eigenspectra spec.Iyk[#Ktpr,*] .poor_MTM flag for failed convergence of the adaptive MTM PSD :Uses: spd_mtm_adapt.pro :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/spd_mtm_spec.pro)
:Description: Perform a spectral analysis via the spd_mtm.pro procedure on a selected interval of a tplot variable. :Params: vname - tplot variable name trange - time range dec_step - decimation step: number of points between values to consider NW - time-halfbandwidth product, DEFAULT: NW = 3 Ktpr - Number of tapers to apply, DEFAULT: Ktpr = 2*NW - 1 padding - Amount of padding to apply (proportional to the original data) DEFAULT: padding=1 so that the frequency step (df) equals the Rayleigh frequency [1/(N*dt)] dpss - structure with tapers and eigenvalues evaluated by spd_mtm_dpss.pro or previous call of spd_mtm.pro flim - limits in percentages of the frequency range to be analyzed, DEFAULT: [df,fny-df], where fny is the Nyquist frequency [1/(2*dt)] smoothing - possible smoothing: 'raw'(0) no smoothing (DEFAULT) 'med'(1) running median 'mlog'(2) running median (constant window on log(f) ) 'bin'(3) binned PSD 'but'(4) low pass filtered PSD (Butterworth filter) 'all'(9) use all the smoothing procedures psmooth - value between (0,0.5] defining the "smoothing window" psmooth=2 -> search the optimum window according to the Kolmogorov-Smirnov test (DEFAULT) model - implemented models: 'wht'(0) white noise, [N] 'pl'(1) power law, [N, beta] 'ar1'(2) first order autoregressive process, [N, rho] 'bpl'(3) bending power law, [N, beta, gamma, fb] (DEFAULT) 'all'(9) use all the models procpeak - possible choices: '' do not search for peaks 'gt'(0) gamma test only 'ft'(1) F test only 'gft'(2) gamma and F test (DEFAULT) 'gftm'(3) only max F value for each PSD enhancement 'all'(9) use all the selection procedures conf - confidence levels in increasing order (DEFAULT is conf=[0.90,0.95,0.99]) resh - value between (0,1.0], reshape the PSD from peaks identified according to the 'gft' procedure at the "resh" confidence level (DEFAULT: resh=0, do not perform the reshaping) gof - PSD background chosing criterium: 'MERIT' - MERIT function (DEFAULT) 'CKS' - Kolmogorov-Smirnov test 'AIC' - Akaike Information Criteria x_label - label for x-axis or defined set of choice (default choice 'Time', see spd_mtm_makeplot.pro) x_units - x variable unit of measures y_units - y variable unit of measures f_units - "frequency" variable unit of measures x_conv - conversion factor for the x variable (N.B. IS UP TO THE USER TO BE CONSISTENT WITH X_UNITS) f_conv - conversion factor for the "frequency" variable (N.B. IS UP TO THE USER TO BE CONSISTENT WITH F_UNITS) OUTPUTS: spec. spec - structure with results of the spectral analysis (as defined in spd_mtm.pro) peak - identified signals (as defined in spd_mtm.pro) par - properties of the time series and parameters defining the spectral analysis (as defined in spd_mtm.pro) ipar - indeces define the procedures for the identification of PSD background and signals (as defined in spd_mtm.pro) rshspec - provide the spec structures based on the reshaped PSD (If it is not specified, the results are overwritten on spec) rshpeak - provide the peak structures based on the reshaped PSD (If it is not specified, the results are overwritten on peak) :Keywords: /hires - spec.raw is the high-resolution PSD estimate /power - spec.raw is the integrated PSD: df*PSD [##^2] /quiet - do not display parameters and results /allpeakwidth - no constrains on the PSD enhancements width /pltsmooth - plot only the smoothed PSDs and stop /no_plot - do not plot the results /double - output in double precision :Uses: spd_mtm.pro :Author: Simone Di Matteo, Ph.D. 8800 Greenbelt Rd Greenbelt, MD 20771 USA E-mail: simone.dimatteo@nasa.gov
(See general/science/spd_mtm/tplot_spd_mtm.pro)