pro mvn_lpw_prd_mrg_exb_derive,data0,data1,flag1,data_x,data_y,data_dy,data_flag,data_names,data_colors ; this is where the poynting flux are derived ; get data0 on data1 resolution ; then filter the two the same way and get dE and dB ; then derive the poynting flux with lower temporal resolution ; evaluate the error with help of flag1 ;fejk some data index=long(lindgen(n_elements(data1.x)/64)*64) nn = n_elements(index) data_names = ['Poynting_msox','Poynting_msoy','Poynting_msoz','dB_msox','dB_msoy','dB_msoz', $ 'dE_msox','dE_msoy','dE_msoz','B_msox','B_msoy','B_msoz'] data_colors = [ 6,6,6,4,4 , 4, 2,2 , 2,1,1 , 1] data_x = dblarr(nn) data_y = fltarr(nn,n_elements(data_names)) data_dy = fltarr(nn,n_elements(data_names)) data_flag= fltarr(nn) data_x = data1.x(index) data_y(*,0) = data1.y(index) * 1.00 data_y(*,1) = data1.y(index) * 1.04 data_y(*,2) = data1.y(index) * 1.08 data_y(*,3) = data1.y(index) * 1.20 data_y(*,4) = data1.y(index) * 1.24 data_y(*,5) = data1.y(index) * 1.28 data_y(*,6) = data1.y(index) * 1.40 data_y(*,7) = data1.y(index) * 1.44 data_y(*,8) = data1.y(index) * 1.48 data_y(*,9) = data1.y(index) * 1.60 data_y(*,10) = data1.y(index) * 1.64 data_y(*,11) = data1.y(index) * 1.68 data_dy = data_y*0.1 data_flag = flag1(index) end