Pi 2 Timing of Substorm Expansion Onset Using THEMIS Ground Based Observations and Other Data

Robert L. McPherron^{1,2} Vassilis Angelopoulos^{1,2} Peter Chi² Martin Connors³ Matthew O. Fillingam⁴ Harald Frey⁴ Steve Mende⁴ George Parks⁴ Jonathan Rae⁵ Geoeff Reeves⁶ Kazuo Shiokawa⁷ Howard Singer⁸ Kiyohumi Yumoto⁹ Shasha Zou¹⁰

- 1. Department of Earth and Space Sciences, UCLA
- 2. Institute of Geophysics and Planetary Physics, UCLA
- 3. Athabasca Univ. Geophys. Observatory, Athabasca AB T9S 3A3 Canada
- 4. Space Science Laboratory, UCB
- 5. Dept. of Physics, University of Alberta, Edmonton, Canada
- 6. LANL, DOE, Los Alamos, NM
- 7. STELAB, Nagoya, Univ., Nagoya, Japan
- 8. Space Environment Center, NOAA, Boulder, CO
- 9. Space Env Res Ctr, Kyushu Univ, Graduate School of Sciences, 6-10-1 Hakozaki Higashiku, Fukuoka, 812-8581, JAPAN
- 10. Department of Dept. of Atmospheric and Oceanic Sciences, UCLA

Draft Manuscript to be submitted to Geophysical Research Letters Special issue on THEMIS Substorm Studies

> January 31, 2008 Institute of Geophysics and Planetary Physics University of California Los Angeles

Abstract

We use data from over 100 ground stations to determine the onset of a substorm which occurred shortly after the THEMIS spacecraft began recording data. We show that the expansion onset at 11:10:30 UT on March 23, 2007 can be determined from Pi 2 pulsations to about $\frac{1}{2}$ cycle (\pm 30 seconds). Profiles of onset times along different arrays suggest there are three distinct regions of Pi 2 excitation. These are the polar cap, auroral zone, and midlatitudes. Activity is seen first at highest latitude, next in the auroral zone, and last at midlatitudes. Polar spacecraft auroral images agree with the Pi 2 onset showing that Pi 2 pulsations measured over a large array of magnetometers can be used to time substorm onset relatively accurately in the absence of ground and satellite observations of the aurora. Furthermore we demonstrate that the delay in Pi 2 onset and signal strength is consistent with propagation away from the meridian of onset.

1 Introduction

2 The five THEMIS spacecraft were launched on February 17, 2007 [Angelopoulos, 2008].

3 In the initial coast phase the five spacecraft occupied very similar elliptical orbits

- 4 following each other in a string of pearls configuration. During this phase the instruments
- 5 were turned on, calibrated, and adjustments made to on-board software. On March 23,
- 6 2007 the spacecraft were commanded into a high data rate mode for the first time and
- 7 serendipitously a substorm occurred as the five spacecraft were approaching midnight
- 8 from the dusk sector. Data obtained at this time provide a unique opportunity to study a

9 substorm observed with multiple spacecraft. The westward expansion of this substorm as

- 10 seen by THEMIS is described by *Angelopoulos, et al.* [2008].
- 11
- 12 In addition to the spacecraft the THEMIS mission is supported by an extensive network
- 13 of ground based observatories (GBO) covering all of North America with 22 all sky
- 14 cameras and fluxgate magnetometers [Harris and al., 2008; Mende, 2008]. The GBO
- 15 stations are augmented by additional Education and Public Outreach (EPO)
- 16 magnetometers (10); the Canadian Magnetic Observatory System (CANMOS)
- 17 observatories (16); the CARISMA (Canadian Array for Realtime Investigations of
- 18 Magnetic Activity) magnetometers (18); the Geophysical Institute Magnetometer Array
- 19 (GIMA) with (>10) magnetometers; the McMac array in central US (8); the MAGDAS
- 20 (MAGnetic Data Acquisition System) in the circum-pan Pacific region (20).
- 21 Magnetometers at most of these stations acquire data at 0.5, 1.0, 5.0, or 10 second
- 22 resolution. This resolution makes possible detailed studies of ULF waves associated with
- 23 substorm onset as discussed by *Keiling and al.* [2008a].
- 24

25 The primary goal of the THEMIS mission is to determine whether substorm expansion 26 onset occurs close to the Earth at about 10 Re through current disruption (CD) or further 27 from the Earth at 20 Re through magnetic reconnection at a near-Earth neutral line 28 (NENL) [Angelopoulos, 2008]. This is to be accomplished through alignment of the five 29 spacecraft at apogee in a radial configuration with spacecraft at ~ 10 , ~ 20 , and ~ 30 Re. As 30 the Earth moves around the Sun the spacecraft apogee cross Earth's magnetotail from 31 dawn to dusk. If the onset of instability in the tail moves inward across the spacecraft 32 array then the NENL model would be favored while outward motion favors the CD 33 model. To achieve this goal it is essential to determine a precise substorm expansion 34 onset time using ground and satellite observations of auroral luminosity and ground 35 magnetic variations. A description of the particle and field modulation at THEMIS and 36 their relation to ground observations is provided in several submitted papers [*Keiling*, 37 2008; Keiling and al., 2008a; b].

38

The purpose of this paper is to use the extensive collection of high time resolution magnetometer measurements described above to time the onset of a substorm observed by THEMIS on March 23, 2007 and to estimate the accuracy of this determination. This time is determined by an analysis of magnetic fluctuations in the Pi 2 period band (45-150 s). The time obtained is compared to the times determined from auroral images on the Polar spacecraft (southern hemisphere), and all sky cameras in the THEMIS GBO

45 network.

46 **Experiment and Data Processing**

47 The locations of five magnetometer arrays used in this work are shown by heavy lines 48 with dots representing stations in Figure 1. Four arrays approximately follow fixed 49 magnetic local times and include the 210° magnetic meridian (Japan), Alaska, Fort 50 Smith, and Churchill/McMac. The fifth array is east-west across North America. These 51 arrays were constructed from stations in different chains. The magnetic foot points of 52 various spacecraft are indicated on the map by large colored symbols. These locations 53 were calculated using the NSSDC Satellite Situation Center to trace field lines from the 54 spacecraft to the northern Hemisphere using IGRF and Tsyganenko 89C for Kp = 3. The 55 THEMIS footprints at 11:10:30 UT (time of expansion onset obtained below) are shown 56 by red diamonds along the North Coast of Siberia. THEMIS C was leading, THEMIS E 57 was following, and A, B, and D were close together between the other two spacecraft. 58 The foot print of a LANL spacecraft was also in this region as shown by the blue circle 59 (L97). Two yellow stars spanning the Bering Strait are the projection to the Northern 60 hemisphere of the limits of the initial breakup observed by the UVI camera on the Polar 61 spacecraft. Three black "X" in Alaska and Canada are the locations of three THEMIS GBO all sky cameras. The footprints of a LANL spacecraft (L89) and a GOES spacecraft 62 63 (G11) in Western Canada are shown by a blue circle and green square respectively. 64 Footprints of two other GOES spacecraft are shown further east in Central and Eastern 65 Canada. Four red starts along the west coast of North America are 1-minute resolution 66 magnetometers used to locate the central meridian of the substorm current wedge. 67 68 The solar wind and interplanetary magnetic field (IMF) were recorded by the ACE 69 spacecraft at L1 and the Cluster spacecraft upstream of the bow shock at 11 hours local 70 time. Geotail was almost exactly at the mid afternoon magnetopause. The solar wind and 71 IMF data were propagated to the bow shock using the modified minimum variance 72 technique [Bargatze, et al., 2005; Weimer, et al., 2003]. The IMF turned steadily 73 southward (-4 nT) at ~09:50 UT and remained this way until 11:07:33. The substorm 74 expansion began three minutes after the sharp northward turning. 75 76 Magnetometer data from the various stations were obtained from Internet web sites, e-77 mail file exchange, and the NSSDC. These data were in a variety of formats with 78 different granulation, different naming conventions and different directory structures. 79 Data from each station for an entire day were converted to a single binary Matlab data 80 file containing data in a uniform format with a standard naming convention 81 (statyyyymmdd). The station's geographic coordinates were taken from original 82 documents downloaded from different web sites. Magnetic coordinates were either 83 obtained from these documents or calculated using the NSSDC Model Web Geographic 84 to Centered Geomagnetic coordinate calculator. 85

The magnetometer data were passed through a sequence of processing steps illustrated by
the curves shown in Figure 2. First, spikes were detected and flagged. Next all flags were
removed from the data by spline interpolation. This was followed by 4-th order
polynomial detrending of each component of the vector magnetic field. The X and Y

- 90 traces from Poker Fat are plotted in the top panel. The processed data were then passed
- 91 through a Butterworth filter with cutoff frequencies set at [1/150, 1/30] Hz to obtain Pi 2

- 92 waveforms. The filtered horizontal components X (north) [blue above base line] and Y
- 93 (east) [red below] are plotted in the middle panel. Both signals have been rectified to
- 94 double the frequency. The amplitude envelopes (black line touching extrema) were
- 95 obtained by Hilbert transforming each signal. The last step illustrated in the bottom panel
- 96 calculated the instantaneous power in the horizontal plane from the sum of squares of the
- 97 two filtered horizontal components. Since this signal is not symmetric about zero a spline
- 98 fit to successive extrema was used to determine the envelope shown by a black line.
- 99

100 The last step in the analysis was the interactive selection of the start time of Pi 2 activity 101 using a graphics cursor. The time selected was the last minimum of signal power prior to

- a sustained increase in power above the background of the preceding 5-minute interval. It
- 103 is apparent from examination of the figure that in this case a half cycle earlier or later
- than was selected (11:10:33) would be incorrect. Since the period of this wave was 88 sec
- 105 this corresponds to a possible error of ± 44 s. In some cases the choice can be made to
- about $\frac{1}{4}$ cycle or an error of ± 22 s. This magnitude of error is supported by the
- 107 consistency between adjacent stations described below.
- 108

109 A summary of the Pi 2 analysis for data from three North American and one Japanese array is presented in Figure 3. The earliest detectable Pi 2 fluctuations began in the polar 110 111 cap at Cambridge Bay at 11:08:50 and Taloyoak at 11:09:33 (left panel). Onset in the 112 auroral zone (65° - 70°) was more than a minute later at about 11:10:30± 40 UT. Adjacent 113 stations in the same chain have similar onset times, but stations at the same latitude in 114 other chains differ by more than 20 s. The auroral zone delays are consistent with 115 eastward propagation from Alaska to central Canada. The midlatitudes onset at 11:11:20 116 ± 20 s is nearly independent of latitude and local time.

117

The Pi 2 power measured by each station is plotted in the right panel. Power is defined as the average horizontal power at the station in a 5-min interval following the onset. Peak power for every array occurs in the auroral zone at the same location as the electrojet.

- 121 However, the peak power decreases in both directions away from Alaska.
- 122

During this substorm several other Pi 2 intensification occurred with onsets at 10:56,

124 11:18, 11:30, and 11:43 UT. The 10:56 Pi 2 was a weak isolated event not seen at all

stations and is almost certainly a pseudo breakup. Magnetic fluctuations from this event

126 were almost completely gone by the time of the main onset at 11:10:30. The 11:18 event 127 was seen in Canada and Alaska as an enhancement of preexisting Pi 2 activity and is

128 therefore hard to time precisely. This event was seen more clearly along the 210°

- meridian array through Japan where it produced very large enhancements of Pi 2 power
- 130 starting at 11:18:08. The remaining two events are localized disturbances recorded at
- 131 only a few stations.
- 132

133 We have identified the 11:10:30 Pi 2 onset as the substorm expansion onset for several

reasons. First and most important it occurred at the same time as a UVI image taken by

135 the Polar spacecraft in the southern hemisphere (see Polar keograms in Figure 3 of

- 136 [Angelopoulos, et al., 2008]). An image at 11:10:28 in the original data shows the
- 137 beginning of an auroral brightening that expanded poleward in the next image at

138 11:11:41. The initial brightening occurred in the post midnight sector 0000 - 0130 MLT 139 between 65 and 70 degrees magnetic latitude. It is this initial brightening that we have 140 mapped into the Northern hemisphere across the Bering Strait (stars in Figure 1). The 141 images at 11:17:49 and 11:19:03 show a sudden westward expansion of the aurora into 142 the premidnight sector as far as 22 MLT [*Keiling*, 2008]. This expansion corresponds to 143 the large Pi 2 seen in Alaska and Japan at 11:18:08. The second reason for identifying 144 11:10:30 as the main onset is that every available station shows a persistent enhancement 145 of Pi 2 activity for at least 30 minutes after this time. In addition, stack plots of the 146 original magnetic components after this time exhibit the characteristic pattern of a 147 substorm current wedge. In the northern hemisphere perturbations in the Y (east) 148 component were everywhere negative along the Fort Smith array and everywhere 149 positive along the 210° meridian through Japan. InterMagnet stations at midlatitudes (red 150 stars in Figure 1) show that the transition from negative to positive Y perturbations was 151 between Victoria, B.C. and Sitka, AL. This indicates that the central meridian of the 152 substorm current wedge was between these two observatories.

153

154 All sky camera data from Fort Yukon, Kiana, and Inuvik were processed producing 155 movies, keograms, and plots of luminosity versus time. Our plots show that at the local 156 time of Fort Yukon (magnetic midnight) the beginning of the auroral expansion was 157 delayed at least four minutes relative to the onset determined by Pi 2 pulsations and the 158 Polar images (c.f. paper by Mende et al.). We have also examined particle data from 159 THEMIS spacecraft at 21 MLT, and from LANL spacecraft on both sides of midnight. At 160 synchronous orbit, neither of the LANL spacecraft sees particle injection at the main onset, 11:10:30. Spacecraft G46 post midnight begins to see lower energy electrons at \sim 161 162 11:15, but the big injection occurred at 11:21:48 UT. In contrast the THEMIS spacecraft 163 slightly outside synchronous orbit (particularly the closest to the LANL spacecraft) see a gradual increase in electrons fluxes beginning at 11:10:30. However, a sudden increase in 164 165 electrons occurred only after the expansion into this local time sector at 11:18 UT. In 166 contrast to the delayed response at THEMIS, a GOES spacecraft at 0200 MLT observed 167 an immediate change characteristic of a downward field-aligned current above and to the 168 west of the spacecraft.

169 **Discussion and Conclusions**

170 The THEMIS mission is designed to resolve the controversy concerning the cause of the 171 substorm expansion onset [Friedrich, et al., 2001]. The hypothesis that the cause is an 172 instability starting close to the Earth and moving outward (projection of the auroral 173 expansion) is referred to as "current disruption" (CD) [Lui, 2001; Lyons, et al., 2003]. 174 The alternate view that substorms are caused by magnetic reconnection at a X-line ~ 20 175 Re down the tail is called the "neutral line" (NENL) model. For nearly 20 years it has 176 been impossible to resolve this controversy because there were too few spacecraft and 177 ground observatories, and existing ones were measuring at too low cadences. It is easy to 178 show that the time for an Alfvén wave to travel from 10-20 Re outward, or a high speed 179 flow from 20 to 10 Re inward is about two minutes. This is about the time between 180 previously available satellite auroral images and the typical resolution of standard ground 181 magnetograms. For the first time the THEMIS mission has provided multiple spacecraft

in the magnetosphere, multiple ground stations with high speed auroral cameras, and highrate magnetometers.

184

185 In this paper we examined the utility of an extensive network of ground magnetometers in timing the main onset of a substorm expansion. Using approximately 100 186 187 magnetometers we found that a Pi 2 pulsation train emerging suddenly from a quiet 188 background can be timed to accuracy better than $\frac{1}{2}$ cycle of a Pi 2 pulsation, i.e. with 189 accuracy of about ± 30 seconds. However, there are obvious delays in the onset time as a 190 function of magnetic latitude and magnetic local time relative to the substorm onset 191 meridian and magnetic local time. Pi 2 activity occurs first at very high latitudes, next in 192 the auroral zone, and last at midlatitudes. It is also delayed as a function of local time 193 away from the region of onset. Clearly a large array of magnetic observatories is needed 194 to determine the time and location of initial onset.

195

For the substorm examined here we found that the world-wide onset of Pi 2 activity was 196 197 rapidly followed by the appearance of signatures of a substorm current wedge. We call 198 such an onset the "Main Onset" [Hsu and McPherron, 1998; Hsu and McPherron, 2002]. 199 In this case our determination is supported by Polar images of auroral brightening which 200 make the selection unambiguous. It is important to note that local ground observations of 201 auroral brightening and expansion at magnetic midnight were significantly delayed 202 relative to the main Pi 2 onset. Such observations cast doubt on the assertion that only 203 auroral images can be used to time substorm onset. Obviously it is essential to be 204 underneath the breakup aurora or observing from space for this to be true. We emphasize 205 that particle injection at synchronous orbit was also significantly delayed relative to the 206 main onset (>8 minutes), as were observations of particles and fields at the THEMIS 207 spacecraft near 21 MLT (see papers by Angelopoulos, et al, [2008 and Keiling and al. 208 [2008a]). However, a GOES spacecraft in the morning sector responded to the main onset 209 almost immediately with signatures of a downward field-aligned current. We attribute 210 this immediate response to the spacecraft being located below and close to the eastern 211 edge of the downward field-aligned current in the substorm current wedge.

212

These observations illustrate the difficulties of resolving the substorm controversy with a limited set of observations. For the substorm examined here the THEMIS spacecraft were not yet in their final configuration, and the substorm onset was apparently located in the

216 Pacific ocean west of the THEMIS ground array, so we are unable to draw definitive

217 conclusions about the cause of the breakup. However, we have shown that Pi 2 pulsations

218 measured with a large array of magnetometers can be used to time substorm onset

relatively accurately in the absence of ground and satellite observations of the aurora.
 Furthermore we have demonstrated that the delay in Pi 2 onset and signal strength is

221 consistent with propagation away from the meridian of onset.

222

Acknowledgments

The principle author would like to thank the many providers of magnetometer and supporting data. These include the NSSDC, WDC-C2 Kyoto, Canadian Space Science Data Portal, NGDC Solar-Terrestrial Data Center. We thank C. T. Russell at UCLA for providing the EPO magnetometer data. The principal author has been supported at UCLA by NASA Grants NNX07AG16G and NNX07AG60G. Additional support was provided by the THEMIS project through NASA NAS5-02099.

References

Angelopoulos, V. (2008), The THEMIS Mission, Space Sci. Reviews, submitted.

- Angelopoulos, V., D. Sibeck, C. W. Carlson, J. P. McFadden, D. Larson, R. P. Lin, J. W. Bonnell, F. S. Mozer, R. E. Ergun, C. Cully, K. H. Glassmeier, H. U. Auster, A. Roux, O. LeContel, S. Frey, T. Phan, S. Mende, H. Frey, E. Donovan, C. T. Russel, R. Strangeway, J. Liu, I. Mann, J. Rae, J. Raeder, X. Li, W. Liu, H. Singer, V. A. Sergeev, S. Apatenkov, G. Parks, M. Fillingim, and J. Sigwarth (2008), First results from the THEMIS mission, Space Sci. Revs., submitted.
- Bargatze, L. F., R. L. McPherron, J. Minamora, and D. Weimer (2005), A new interpretation of Weimer et al.'s solar wind propagation delay technique, J. Geophys. Res., 110(A7), 1-12.
- Friedrich, E., J. C. Samson, I. Voronkov, and G. Rostoker (2001), Dynamics of the substorm expansive phase, J. Geophys. Res., 106(A7), 13145-13163.
- Harris, S. E., and e. al. (2008), THEMIS Ground Based Observatory System Design, Space Sci. Reviews, submitted.
- Hsu, T.-S., and R. L. McPherron (1998), The main onset of a magnetospheric substorm, in International Conference on Substorms (ICS-4), edited by S. Kokubun and Y. Kamide, pp. 79-82, Terra Scientific Publishing Company and Kluwer Academic Publishers, Tokyo and Dordrecht.
- Hsu, T. S., and R. L. McPherron (2002), An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets, J. Geophys. Res., 107(A11), 15 pp.
- Keiling, A. (2008), Low-frequency field and particle oscillations during the 23 March 2007 substorm: 1. Three activations, Geophys. Res. Letts., submitted.
- Keiling, A., and e. al. (2008a), Correlation of substorm injections, auroral modulations, and ground Pi 2, Space Sci. Reviews, submitted.
- Keiling, A., and e. al. (2008b), Properties of substorm-asociated plasma sheet oscillations: THEMIS results, Geophys. Res. Letts., submitted.
- Lui, A. T. Y. (2001), Current controversies in magnetospheric physics, Revs. Geophys., 39(4), 535-563.
- Lyons, L. R., C. P. Wang, and T. Nagai (2003), Substorm onset by plasma sheet divergence, J. Geophys. Res., 108(A12), SMP10-11-18.
- Mende, S. (2008), The THEMIS array of ground based observatories for the study of auroral substorms, Space Sci. Reviews, submitted.
- Weimer, D. R., D. M. Ober, N. C. Maynard, M. R. Collier, D. J. McComas, N. F. Ness, C. W. Smith, and J. Watermann (2003), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108(A1), SMP16-11-12.

Figures

Figure 1. The location of magnetometer arrays are shown by heavy lines connecting black dots. Spacecraft foot points at 11:10:30 UT are denoted for THEMIS by red diamonds, for LANL spacecraft by blue circles, and for GOES spacecraft by green squares. The two yellow six-pointed stars are the projection of the auroral activation seen in the southern hemisphere by Polar spacecraft. Four red stars show location of midlatitudes observatories that define the central meridian of substorm current wedge. The green diamonds depict local time at the equator at the time of substorm expansion onset.

Figure 2. Poker Fla Pi 2 pulsations are presented. Top panel show detrended original data. Middle panel shows absolute value of X-component (blue line above baseline) and negative of absolute value of Y-component (red line below baseline). Heavy black lines define the envelopes as determined by a Hilbert transform. Bottom panel presents the instantaneous horizontal power with an envelope determined by cubic spline fit to extrema. The vertical dashed line defines onset of Pi 2 activity in all three frames.

Figure 3. Left panel shows delay in Pi 2 onset times along the Churchill (blue *), Fort Smith (red o), Alaska (black diamond), and 210 Meridian (cyan triangle) arrays relative to 11:11:00 UT. Auroral zone onset time is ~11:10:30 UT. Right panel displays average Pi 2 band power in 5 minutes after onset versus magnetic latitude along the same four arrays. The signal is strongest in the North American auroral zone and decreases in strength from west to east. The onset is earliest in the west and latest in the east.