<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02:00</td>
<td>Introduction</td>
<td>V. Angelopoulos</td>
</tr>
<tr>
<td>02:10</td>
<td>THEMIS Web Site</td>
<td>D. King</td>
</tr>
<tr>
<td>02:20</td>
<td>V4.00 Science Software/Data Status Report</td>
<td>V. Angelopoulos</td>
</tr>
<tr>
<td>02:30</td>
<td>THEMIS Science Data Analysis Software</td>
<td>J. McTiernan / Pat Cruce</td>
</tr>
<tr>
<td>03:00</td>
<td>THEMIS Graphical User Interface (GUI)</td>
<td>D. King / J. McTiernan</td>
</tr>
<tr>
<td>03:15</td>
<td>THEMIS Ground Based Observatories (GBO)</td>
<td>J. McTiernan</td>
</tr>
<tr>
<td>03:30</td>
<td>Q&A’s</td>
<td>All</td>
</tr>
<tr>
<td>03:45</td>
<td>Software Clinic</td>
<td>All</td>
</tr>
</tbody>
</table>
V4.00 Science Software/Data Status Report

• General
 – Loads, introduces and calibrates all L1 quantities, all instruments
 – Loads calibrated L2 quantities

• FGM
 – L1, L2 data available since early March 2007

• SCM
 – L1 data available since early March 2007
 – L2 frequency spectrograms (FBK) available now

• EFI
 – All L1 data available from TH-C since May 2007, TH-D,E since Jun 7

• ESA
 – No L1 data, only L0 data – however, read-in is transparent to user
 – All data available since ESA turn-on, i.e., mid-March
 – L2 omnidirectional energy spectrograms, ground moments available now

• SST
 – L1 data available since SST turn-on, mid-March
 – L2 omnidirectional energy spectrograms available now
THEMIS Data Analysis Software

<table>
<thead>
<tr>
<th>Organization</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC Berkeley</td>
<td>D Larson, H Frey, J Bonnell, J McFadden, A Keiling</td>
</tr>
<tr>
<td></td>
<td>J McTiernan, J Lewis, D King</td>
</tr>
<tr>
<td>UCLA</td>
<td>V Angelopoulos, P Cruce, B Kerr, C Goethel, M Feuerstein, K Ramer, H Schwarzl</td>
</tr>
<tr>
<td>SP Systems</td>
<td>K Bromund</td>
</tr>
<tr>
<td>NASA/GSFC</td>
<td>V Kondratovich</td>
</tr>
<tr>
<td>MPE</td>
<td>E Georgescu</td>
</tr>
<tr>
<td>TUBS</td>
<td>U Auster</td>
</tr>
<tr>
<td>CETP</td>
<td>P Robert, O LeContel</td>
</tr>
<tr>
<td>Calgary</td>
<td>B Jackel, E Donovan</td>
</tr>
</tbody>
</table>
Overview

- Software Objectives
 - Powerful, Flexible Command Line Interface
 - GUI to provide Easy Access to Key Features
- Software Installation
- Data Distribution
- Key Routines, crib sheets.
- Examples
Software Objectives

• Code is available to everyone, but not required to analyze data.
• IDL based (library of routines –but no main program!).
• Separates the tasks of:
 • Reading files.
 • Manipulating data
 • Plotting
• Platform independent. Works on:
 • Solaris
 • Linux
 • Windows
 • Mac OS X
• Self-Documenting
 • Auto-generated html help: idl/_tdas_doc.html
 • IDL> DOC_LIBRARY, 'routine_name'
THEMIS-specific routines (idl/themis)

- Instrument-specific routines organized according to ground/spacecraft/state, fields/particles, instrument name.
 - Loading data
 - Calibrating data
- Transforming data
- Examples – crib sheets
- GUI – built on top of the command-line routines

General routines (idl/ssl_general)

- Library of generic routines useful for building mission-specific load routines
 - CDF reading/writing routines
 - File retrieval routines
 - Miscellaneous routines
- Plotting routines
 - Uses “tplot variables”: strings that associate data together with metadata and plotting parameters.
 - Routines to manipulate/plot tplot variables
- Data Export routines
- Data Processing routines

External Libraries (idl/external)

- CDAWlib – from NASA SPDF, reads/plots CDF data
- IDL_GEOPACK – Magnetic field modelling kit
System Requirements

Windows, Solaris, LINUX, PPC Mac or Intel Mac.

IDL 6.2 or higher required

IDL Patch Recommended

• http://cdf.gsfc.nasa.gov/html/cdf_patch_for_idl6x_new.html
• Required for IDL 6.2, (Strongly recommended for IDL 6.4 and 7.0)
• Required for Intel Mac, regardless of IDL version

For Mac, system configurations are required to run IDL

• X11 – may need to be installed.
• mouse click-through
 – one-time X11 configuration necessary for proper operation:
 defaults write com.apple.x11 wm_click_through -bool true

See THEMIS User's Guide for full information, available at:
ftp://apollo.ssl.berkeley.edu/pub/THEMIS/
Installing/Configuring TDAS

For a new installation:

- Download and expand the latest TDAS release .zip file. The latest version is 4.00.
 http://themis.ssl.berkeley.edu/socware/tdas_4_00/tdas_4_00.zip
- Create a directory called TDAS into which you will copy the latest software.
- Move the tdas_x_xx folder into the TDAS directory you created.
- Configure IDL to search the TDAS directory for IDL programs. Details on next slide.

For an upgrade of an existing installation of TDAS, installed as per the above 4 steps:

- Remove old tdas_x_xx from the TDAS directory.
- Download and expand the latest TDAS release .zip file.
- Copy the new tdas_x_xx directory into the pre-existing TDAS directory.
- Re-start IDL.
Set up the IDL path

- **Windows and IDLDE on any platform:**
 File->Preferences
 Path Tab
 Press Insert
 Browse to find the TDAS folder you created.
 Check the box preceding the path to 'search subdirectories'

- **UNIX-like systems (Mac OS X, Linux, Solaris)**
 In .cshrc:
 setenv IDL_PATH ‘<IDL_DEFAULT>:+/path/to/tdas’
 -Or-
 In .bashrc or .bash_profile:
 export IDL_PATH=‘<IDL_DEFAULT>:+/path/to/tdas’

Path to Data Directory

- Data directory will be created automatically at
 - C:/data/themis (Windows)
 - ~/data/themis (UNIX/LINUX/Max OS X)
- Run thm_ui_config from command line or THEMIS GUI if you need to change this.
The software operates on Level 1 and Level 2 data.

Data Level Definitions:

Level 0 Data –
- Raw files (*.pkt) one per APID.
- Only used for loading ESA data.

Level 1 Data -
- CDF (Common Data Files) files (*.cdf)
- Files contain raw, uncalibrated data. i.e. counts, DAC units.
- Requires TDAS software to interpret. Calibration is done by default when Level 1 data is input.

Level 2 Data -
- CDF files – contain physical quantities – TDAS software is not needed for interpretation.
- Files available for ESA, FBK, FIT, FGM, MOM, SST – can be downloaded from SPDF.
Data / Directory structure

- Data Directory structure is large!
 - Scores of files per day
 - ~3GB/day for all probes (L1 data)

- Directory hierarchy keeps directory sizes manageable
 - Software performs automatic file retrieval.
 - Software maintains directory hierarchy.

- Behavior of Automatic File Retrieval is configurable
 - ‘No Download’ mode for stand-alone operation.
 - ‘No Update’ mode to preserve local modifications.
 - Root directory of local copy of hierarchy is determined automatically, but configurable.
 - Available configuration methods:
 - thm_ui_config IDL widget
 - 'Config' button in the thm_gui IDL widget.
 - Environment variables
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>L0</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>thm_load asi</td>
<td>All-Sky Imager.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_ask</td>
<td>All-Sky Keogram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_efi</td>
<td>Electric Fields Instrument waveforms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_esa</td>
<td>ElectroStatic Analyzer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_esa_pkt</td>
<td>ElectroStatic Analyzer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_fbk</td>
<td>Fields Filter Bank</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_fft</td>
<td>On-board Fields Fast Fourier Transform.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_fgm</td>
<td>Flux Gate Magnetometer waveforms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_fit</td>
<td>On-Board Fields Spin-Fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_gmag</td>
<td>Ground Magnetometer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_hsk</td>
<td>Housekeeping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_mom</td>
<td>On-board Particle Moments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_scm</td>
<td>Search Coil Magnetometer waveform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_sst</td>
<td>Solid State Telescope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thm_load_state</td>
<td>Orbit and Attitude</td>
<td>v2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(*) calibration routine available but still under development
- data reduction and analysis routines available: see crib sheet
Primary Routines

Usage Conventions:

Use keywords to determine functionality

- **level** - Calibrated Level 1 data is the default (Except for SST and ESA data, which is handled differently).
- **datatype** and **probe** keywords determine which data is loaded and/or created through calibration process
- **/get_support_data** keyword is needed in **thm_load_state** to load data required by **thm_cal* and thm_cotrans** routines.

To load uncalibrated data, set **type** = ‘raw’ (For all but SST, ESA)

Example from IDL Command Line:

```idl
timespan,'2007-07-07',1 ; choose a time range
thm_load_state, probe = 'a', /get_support_data
thm_load_fgm, probe='a', coord='gsm', datatype='fgl', level=1
```
Variable Names

Probe specification. Example: tha
- a – can be one of [a-e] specifies probe

Particle data. Example: tha_peif
- p – particles
- e – ESA, s – SST
- i – ions, e – electrons
- f – full, r – reduced, m – moments, b – burst

FGM data. Example: tha_fgl

Electric Fields and SCM. Example: tha_efs
- ef - efi, sc – scm, fb – fbk, ff – fft
- s – spin fit, f – full orbit or fast survey, p – particle burst, w – waves burst.

Wildcards are accepted in names when plotting and data processing:
- th?_fg?
- th[ab]_fg[lh]
- th?_state*
Crib Sheets for Loading, Processing and Plotting

thm_crib Asi	thm_crib_gmag
thm_crib_dproc	thm_crib_mom
thm_crib_efi	thm_crib_mva
thm_crib_esa_da	thm_crib_overplot
thm_crib_esa_moments	thm_crib_part_getspec
thm_crib_export	thm_crib_scm
thm_crib_fac	thm_crib_sst
thm_crib_fbk	thm_crib_state
thm_crib_fft	thm_crib_tplot
thm_crib_fgm	thm_crib_tplotxy
thm_crib_fit	thm_crib_twavpol
	thm_map_examples

IDL>.run thm_crib_as

or cut and paste, or copy and modify
Coordinate Transformations

- **thm_cotrans**
 - transforms to/from any of the following coordinate systems in a single call
 - updates metadata in output.
 - knows coordinate system of input from metadata
- **Currently Supported Geophysical Coordinate Systems**
 - SPG Spinning Probe Geometric
 - SSL Spinning SunSensor L-vectorZ
 - DSL Despun SunSensor L-vectorZ
 - GEI Geocentric Equatorial Inertial
 - GSE Geocentric Solar Ecliptic
 - GSM Geocentric Solar Magnetospheric
 - SM Solar Magnetic
 - GEO Geographic Coordinate System
- **Example**
 - `thm_load_state, /get_support_data`
 - `thm_cotrans, 'th?f_g?', out Coord='geo', out_suffix = 'geo'`
Plotting & Analysis Routines

Plotting

• tplot
• tplotxy
• plotxy
• plotxyz
• tplot_names
• tlimit
• get_data
• store_data

Analytic Coordinate Transformations

• tvector_rotate
• fac_matrix_make
• thm_fac_matrix_make
• minvar_matrix_make

Tsyganenko Model

• (t)trace2iono
• (t)trace2equator
• (t)t89
• (t)t96
• (t)t01
• (t)t04s

Example:

```
tt89,'thc_state_pos',newname='model_field'
fac_matrix_make,'model_field' ,other_dim='xgse', newname = 'fac_mat'
tvector_rotate, 'fac_mat', 'thc_peir_velocity', newname = 'ion_velocity_model_fa'
```
Plotting Examples

tplotxy can be used to plot isotropic position plots. Like plots of magnetic field models and spacecraft position.

Plotxyz can be used to plot 3 dimensional isotropic data, with any axis. (Not restricted to time-series.)
Plotting Angular Spectra

Pitch angle spectra for full and reduced mode electron ESA data. Plotted using tplot.

```
thm_part_getspec, $    
probe=['c'], $ ;select probe
trange=['07-06-03/01:08', $ ;select timerange
  '07-06-03/04:20'], $  

data_type=['peef','peer'], $ ;select data type
angle='pa', $ ;select pitch angle spectra
regrid=[32,16] ;set resolution of pitch/gyro spectra
```
Command Line Example 1

- To load data:
 » timespan,’6-10-2’,2,/days
 » thm_load_gmag,site=’ccnv’,$
 /subtract_average
- To plot data:
 » options,’thg_mag_ccnv’,$
 labels=[’Bx’,’By’,’Bz’]
 » tplot_options, ‘title’, $‘GMAG Examples’
 » tplot,’thg_mag_ccnv’
Command Line Example 2

- Wavelet transform on an interval of interest
 - Define and display the interval
 » Tr = ['2006-10-2/16:00','2006-10-3/05']
 » timebar,tr

- Split the 3-vector into components:
 » split_vec,'thg_mag_ccnv'

- Compute transform of one component
 » wav_data,'thg_mag_ccnv_x','/kol $,trange=tr ,maxpoints=24*3600*2

- Set color limits (log scale)
 » zlim,*pow', .0001,.01,1

- Plot it.
 » tplot,*ccnv_x*,trange=tr
Graphical User Interface

Called from IDL command line (thm_gui).

IDL> thm_gui

Gives the ability to load, calibrate, coordinate transformations, data manipulations and plot data.

Calls various TPLOT routines

IDL functions are available from the command line when the main window is being displayed as well.
Main Menu:

![THEMIS Main Menu](image)

- Data Choices
 - ASI
 - ASK
 - ESA
 - EFI
 - FBK
 - FFT
 - FGM
 - FIT
 - GMAG
 - MOM
 - SCM
 - SPIN
 - SST
 - STATE

- Loaded Data
 - None

- Active Data (Coordinates)
 - None

- History
 - Starting THM_GUI
 - Master widget id: 1
 - plot_type = "SCREEN"

- Process/Plot Data
 - Coordinate Transform
 - Data Processing
 - Plot Menu
 - Overview Plots
 - Draw Plot

- Clear Active Data

- Save History
 - Clear History

- Time Range

- Load Data

- Clear Load Queue
Choose Data to Load:

- Click here for FGM data
Selecting Data:

Nothing will happen until you click here
Choose a Time Range:

Click here to choose times.
Time Selection: Entering start time

Initially times are set to 1970-01-01/00:00:00
Times show up in history window as you type.
Time Selection:

Click here for a time selection window
Time Selection: Entering a stop time

Click here to accept selected time and close window
Time Selection:

Click here to accept time range and close window
Selection Displayed in History Window:

Now you can load data.
After loading, All data is “active”

State data has been loaded automatically for FGM.
Setting Active Data:

Type a string, or click to set data to “active”
Active Data Window:

Selected data is now active
What next?

THEMIS Science Software Training

− Coordinate transform
− Data Processing
− Plotting
Coordinate Transform:

Click one of these to choose output coordinates

Shows current transform

Click here to perform the transformation

Message window will show warnings, errors, and progress

Click one of these to choose output coordinates
Clicked on GEI, and Transform Button:
Back on the Main Menu:

New “active” data. Remember – only active data is processed.
Plotting:

Click the “Draw Plot” button. Active data is plotted.
Plot:
Plot Menu:
Plot Menu: Rescale Active Data

Enter new start time

You must click here, in order to accept the new start time.
Plot Menu: New time limits automatically plots new data.
Plot Menu: Setting Size and Window options.
Plot Menu: Setting “PNG” or “PS”

If a PNG or PS plot type was selected, a file selection window is displayed.

* Remember to click the Screen option to return to screen plots.

Click here to enter a file name
Data Processing Resets Active Data:

These processes reset the “active” data.
Data Processing Menu:

- Subtract Average
- Subtract Median
- Smooth Data
- Block Average
- Clip
- Deflag
- Degap
- Clean Spikes
- Time Derivative
- Wavelet Transform
- Set Time limits
- Fename
- Save
- Restore
- Save Ascii
- Delete
- Close

Input Values:
- Time Interval for degap: 1.0
- Margin for degap: 0.25
- max gap size for degap: 10000

Input Value:
- Time Resolution (sec): 60

Input Values:
- Max for clipping: 20.0
- Min for clipping: 20.0
Data Processing Menu:

- **THEMIS Data Processing Menu**
 - Subtract Average
 - Subtract Median
 - Smooth Data
 - Block Average
 - Clip
 - Dettag
 - Set Time Limits

- **Input Value**
 - New Name for variable: tha_fgs_ga
 - tha_fgs_ga
 - Cancel
 - Accept and Close

- **Filename For Saved Data**
 - Choose Filename To Restore Data
 - Open
 - Cancel

Deletes Active Data.
Plot of New Processed Data: (after dpwrspec processing)
Overview Plots:

Click here for an overview plot:
Overview Plot Menu:

* Warning - this process might take awhile
Sample Overview Plot:
History Window:

These are the IDL commands used.
Click here to save history. Use when sending help request.
History File Selection Window:

Select file name and save.
Clear History Window:

Click here to clear the window.
Clear History Window:

History has been cleared

Help, Error, and Config Buttons:
Help Window:

This has descriptions of all of the buttons and windows in the GUI.

THM_GUI widget definitions:

MAIN WINDOW:

Starting from the left, the first column of buttons (under “Data Choices”) on the left side are used to choose different kinds of data to load, to choose the time range for the data, and to load the data. There is a button for each instrument, a button for time range selection and a button which initiates the loading process. Each of these buttons (except for the load button) will pop up a selection widget.

The buttons across the top in the middle are for coordinate transforms, data processing and plotting and overview plots. When clicked, each of these buttons pops up a widget for different data manipulation tasks. If the “Draw Plot” button is clicked, a plot of the data is created.

In the middle of the window there are windows which show the data sets that have been selected and the history of events.

On the bottom of the main window there is a one line progress widget that informs the user about the status of the current data loading or processing. Also there are buttons: “Help”, “Error”, “Config” and “Exit”. The Help button pops up a text widget that shows this text. The Error button pops up a widget with the THEMIS help request form, that can be edited, saved and emailed. The Config button pops up a widget that allows the user to set different parameters in the THEMIS system variable that controls automatic downloading. The Exit button ends the program.

WINDOWS, BUTTONS AND POPUPS:

LOADED DATA WINDOW:

When data is loaded, information appears in the window. For each data set loaded, the appropriate variable name and time range are listed. To choose a particular data set for plotting or other processing, left click on it. Multiple data sets can be selected by holding the “control” key and clicking more than one. Also, you
Error Window:

This should pop up automatically if there is a crash. Also you can get this by clicking the ERROR button on the main window.

You can edit this form, and please save this and email it to:

THEMIS_Science_Support@ssl.berkeley.edu

Also email a saved history file and any other pertinent information that can be cut and pasted from the IDL window.
Configuration Settings: Allows configuration to be changed, saved.

You need to be able to write to this directory if you download data.

- Saves in a file. Input into every session
- Resets to initial state.
- Resets to default state in distribution, deletes any saved files.

Local data directory
Remote data directory

Download Data: Automatically
Update Files: Update if Newer
Load Data: Download and Load
Verbose (higher value = more comments): 2

Messages
Exit Button:

Click here to exit GUI. Popups are dismissed, except for Help, Error or Config and plot windows. Loaded data is not deleted and will show up in Loaded Data window on restart.
THM_GUI Tips:

Remember to save and email your history file if you have a bug. Also feel free to include any other output messages that show up in the IDL command line.

Always choose a time range before loading data. Don't load more than a couple of days at a time, or a couple of hours if you are loading full resolution all-sky imager (asf) data. If you try to load a relatively long time period, you will get a pop-up window that will ask you if you really want to do that.

The choice of "probe" in the data loading window is global, that is, all of the selected data will be loaded for the probe(s) chosen most recently. If, for example, you want to load EFI data from probe "A" and FGM data from probe "B", you will need to load these separately. When choosing multiple probes, data types, or whatever, hold the "control" key, and click more than one. Also, you can click on an option, then hold "shift" and the left mouse button, and drag the cursor over the others.

The data names are kind of cryptic, there is a table in the User's Guide and also at the end of the text in the help window for guidance.
THM_GUI Tips:

Once you've chosen data, hit the "Clear Load Queue" to clear it out if you don't want to load it. If a load fails (for a reason other than "the data isn't there"), then the data are still waiting to be loaded. Clear the load queue.

Remember that all loaded data are set to "active" immediately upon loading. If you don't want all of that data to be active, then click on what you want in the Loaded Data window.

If you want to delete all data, type "*" window below the Loaded Data window, click "Set Active Data to String", call up the Data Processing window, and click "Delete".

For coordinate transforms, data that have "Unknown" for a coordinate system will not be transformed. Multiple data sets with different input coordinates *can* be transformed. Data Processing and Plotting tasks are only possible when there is "active" data.
THM_GUI Tips:

When typing in strings for numerical input -- be careful. Strings that aren't numbers are interpreted as 0 by IDL, but strings that aren't numbers, but start with a number are set to the number, e.g., 'a14' is set to 0, but '1a4' is set to 1. When in doubt, look in the History to see what you've typed.

Sometimes data is inappropriate for a given operation (especially wavelet transforms, and power spectra). We have tried to catch as many of these situations as we can, but there probably will be more as more types of data are imported. If something looks weird, save your history, and email us.

Some processes can take a while (e.g., calibrating SCM data, wavelet transforms of whole days). Currently there is no good way to stop a process except for the standard IDL "control-C" on the IDL window. This doesn't always work...
THM_GUI Tips:

The Plot Menu button may first issue a "tplot" call when the window pops up.

If you create a "PNG" plot, remember to reset to "SCREEN" for screen plotting.

Don't try to plot more than about 10 quantities at a time, if there is spectrogram data, there will be a crash.

There will undoubtedly be more of these…
THEMIS software for GBO all-sky imager
Thm_crib_asi.pro
Harald U. Frey
All-sky imager data products

1. Keograms along local magnetic meridian
 • Delivered daily jpeg-compressed
 • Reprocessed ½ year later with full resolution images

2. Geomagnetically mapped thumbnail images
 • Delivered daily square-root intensity compression
 • 1024 pixels within +-8° magnetic Latitude and ~+-12° Longitude
 • 3 seconds temporal resolution

3. Full resolution images
 • 256x256 pixels covering about 600 km radius around station
 • Delivered about ½ year later
 • 3 seconds temporal resolution
 • Full 16 bit intensity scale
Daily overview of available keograms
Zoom into interesting time
Watch “movie” of single station
Mosaic with S/C footprint
From thumbnail images

Black line marks footprint of THEMIS-P2 during whole night
Asterisk marks location at time of mosaic
Ground magnetometer Examples
Thm_crib_gmag.pro
Three station example
Wavelet transform example
Pseudo-AE of network