;+ pro spd_bshock,xsh,ysh ,ysh_west=ysh_west,short=short,xsh_max=xsh_max ;gse or gsm does not matter because bow shock is assumed to be ; ;rotationally symmetric ; ; This subroutine calculates the bow shock (X,Y) locations based on ; the Fairfield model (JGR, 1971 Vol 76 Oct-Dec p.6700). It outputs the location of the bow ; shock down to a very large distance (xmp_max=-300 Re) ; Aberration of 4 degrees is assumed ; Modification: calculates ysh for given xsh and returns only abs(ysh) ; Note, this provides flexibility with xsh_max ; $LastChangedBy: jimm $ ; $LastChangedDate: 2015-07-24 12:07:30 -0700 (Fri, 24 Jul 2015) $ ; $LastChangedRevision: 18247 $ ; $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_3_2/spedas_gui/utilities/spd_bshock.pro $ ;- if not keyword_set(xsh_max) then xsh_max=14.3 ; Should have been 10.8 according to Fairfield paper xsh_min=-300 npoints=1000 aberangle=4.5 if not keyword_set(short) then short=0 else short=1 if n_elements(xsh) eq 0 then $ xsh=xsh_min+float(indgen(npoints))*(xsh_max-xsh_min)/(npoints-1) ; ; coefficients a1=0.2164 b1=-0.0986 c1=-4.26 d1=44.916 e1=-623.77 beta=a1*xsh+c1 gamma=b1*(xsh)^2+d1*xsh+e1 delta=beta^2-4*gamma ysh_east=(-beta-sqrt(delta))/2. ysh_west=(-beta+sqrt(delta))/2. if not short then begin ysh=ysh_east ireverse=n_elements(xsh)-indgen(n_elements(xsh))-1 xsh=[xsh,xsh(ireverse)] ysh=[ysh_east,ysh_west(ireverse)] endif else ysh=ysh_east end