;+ ;FUNCTION: dm_3d_new(dat,ENERGY=en,ERANGE=er,EBINS=ebins,ANGLE=an,ARANGE=ar,BINS=bins) ;INPUT: ; dat: structure, 3d data structure filled by themis routines get_th?_p??? ;KEYWORDS ; ENERGY: fltarr(2), optional, min,max energy range for integration ; ERANGE: fltarr(2), optional, min,max energy bin numbers for integration ; EBINS: bytarr(na), optional, energy bins array for integration ; 0,1=exclude,include, ; na = dat.nenergy ; ANGLE: fltarr(2,2), optional, angle range for integration ; theta min,max (0,0),(1,0) -900. ; energy/charge analyzer ; the following 15 lines were added to prevent photoelectron contamination when in the plasmasheet ; this section assumes the ESA energy steps go from high energy to low energy lin = 1 ; this line determines whether the data is df or log(df) interpolated to low energy if charge eq -1. then begin ; scale=1. scale=.5 if dat.nbins eq 1 then begin ind=where(energy[*] lt scale*denergy[*],count) ; if count gt 0 and charge lt 0 then begin if count gt 0 then begin mind = min(ind) denergy[mind] = energy[mind]+denergy[mind]/2. energy[ind] = 0. energy[mind] = denergy[mind]/2. if lin eq 1 then data[mind] = data[mind-1] + (energy[mind-1]-energy[mind])*(data[mind-1]-data[mind-2])/(energy[mind-2]-energy[mind-1]) if lin eq 0 then data[mind] = exp(alog(data[mind-1]) + (energy[mind-1]-energy[mind])*(alog(data[mind-1])-alog(data[mind-2]))/(energy[mind-2]-energy[mind-1])) endif else begin nrg=dat.nenergy-1 if lin eq 1 then data[nrg]=data[nrg]+(data[nrg]-data[nrg-1])/(energy[nrg]-energy[nrg-1])*(-energy[nrg]/2.+denergy[nrg]/4.) if lin eq 0 then data[nrg]=exp(alog(data[nrg])+(alog(data[nrg])-alog(data[nrg-1]))/(energy[nrg]-energy[nrg-1])*(-energy[nrg]/2.+denergy[nrg]/4.)) denergy[nrg]=denergy[nrg]/2.+energy[nrg] energy[nrg]=denergy[nrg]/2. endelse endif else begin ind=where(energy[*,0] lt scale*denergy[*,0],count) ; if count gt 0 and charge lt 0 then begin if count gt 0 then begin mind=min(ind) denergy[mind,*] = energy[mind,*]+denergy[mind,*]/2. energy[ind,*] = 0. energy[mind,*] = denergy[mind,*]/2. if lin eq 1 then data[mind,*] = data[mind-1,*] + (energy[mind-1,*]-energy[mind,*])*(data[mind-1,*]-data[mind-2,*])/(energy[mind-2,*]-energy[mind-1,*]) if lin eq 0 then data[mind,*] = exp(alog(data[mind-1,*]) + (energy[mind-1,*]-energy[mind,*])*(alog(data[mind-1,*])-alog(data[mind-2,*]))/(energy[mind-2,*]-energy[mind-1,*])) endif else begin nrg=dat.nenergy-1 if lin eq 1 then data[nrg,*]=data[nrg,*]+(data[nrg,*]-data[nrg-1,*])/(energy[nrg,*]-energy[nrg-1,*])*(-energy[nrg,*]/2.+denergy[nrg,*]/4.) if lin eq 0 then data[nrg,*]=exp(alog(data[nrg,*])+(alog(data[nrg,*])-alog(data[nrg-1,*]))/(energy[nrg,*]-energy[nrg-1,*])*(-energy[nrg,*]/2.+denergy[nrg,*]/4.)) denergy[nrg,*]=denergy[nrg,*]/2.+energy[nrg,*] energy[nrg,*]=denergy[nrg,*]/2. endelse endelse ; this section throws away background counts in the lowest ion energy channels in low density plasmas as determined from sc_pot endif else if charge eq +1. then begin if dat.sc_pot gt 20. then begin if dat.nbins eq 1 then begin ind=where(dat.energy lt dat.sc_pot/2.,count) if count gt 0 then data[ind]=0. endif else begin ind=where(dat.energy[*,0] lt dat.sc_pot/2.,count) if count gt 0 then data[ind,*]=0. endelse endif endif th1=theta-dtheta/2. th2=theta+dtheta/2. ph1=phi-dphi/2. ph2=phi+dphi/2. cth1 = cos(th1) cth2 = cos(th2) sth1 = sin(th1) sth2 = sin(th2) cph1 = cos(ph1) cph2 = cos(ph2) sph1 = sin(ph1) sph2 = sin(ph2) s_2ph1 = sin(2.*ph1) s_2ph2 = sin(2.*ph2) s2_ph1 = sph1^2 s2_ph2 = sph2^2 s3_th1 = sth1^3 s3_th2 = sth2^3 c3_th1 = cth1^3 c3_th2 = cth2^3 p3dxx = (Const^2*total(denergy*(energy^(1.5))*data*((ph2-ph1)/2.+(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)*denergy*(energy^(1.5))*data1*((ph2-ph1)/2.+(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)))^.5 p3dyy = (Const^2*total(denergy*(energy^(1.5))*data*((ph2-ph1)/2.-(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)*denergy*(energy^(1.5))*data1*((ph2-ph1)/2.-(s_2ph2-s_2ph1)/4.)*(sth2-sth1-(s3_th2-s3_th1)/3.)))^.5 p3dzz = (Const^2*total(denergy*(energy^(1.5))*data*dphi*(s3_th2-s3_th1)/3.*denergy*(energy^(1.5))*data1*dphi*(s3_th2-s3_th1)/3.))^.5 p3dxy = (Const^2*total(denergy*(energy^(1.5))*data*((s2_ph2-s2_ph1)/2.)*(sth2-sth1-(s3_th2-s3_th1)/3.)*denergy*(energy^(1.5))*data1*((s2_ph2-s2_ph1)/2.)*(sth2-sth1-(s3_th2-s3_th1)/3.)))^.5 p3dxz = (Const^2*total(denergy*(energy^(1.5))*data*(sph2-sph1)*((c3_th1-c3_th2)/3.)*denergy*(energy^(1.5))*data1*(sph2-sph1)*((c3_th1-c3_th2)/3.)))^.5 p3dyz = (Const^2*total(denergy*(energy^(1.5))*data*(cph1-cph2)*((c3_th1-c3_th2)/3.)*denergy*(energy^(1.5))*data1*(cph1-cph2)*((c3_th1-c3_th2)/3.)))^.5 ; Momentum tensor M is in units of eV/cm^3, Pressure P = M - mass*vel*flux/1.e10 return, [p3dxx,p3dyy,p3dzz,p3dxy,p3dxz,p3dyz] end