;+ ;Function: t01 ; ;Purpose: generates an array of model magnetic field vectors from ; a monotonic time series and an array of 3-d position ; vectors ; ;Input: ; tarray: N array representing the time series in seconds utc since 1970 ; rgsm_array: Nx3 array representing the position series in earth radii (required to be in GSM coordinates) ; pdyn_array: Solar wind pressure (nanoPascals) ; dsti_array: DST index (nanoTeslas) ; yimf_array: y component of the interplanetary magnetic field ; zimf_array: z component of the interplanetary magnetic field ; g1_array: index describes solar wind conditions in the previous hour ; g2_array: index describes solar wind conditions in the previous hour ; ;Keywords: ; period(optional): the amount of time between recalculations of ; geodipole tilt in seconds(default: 60) increase this ; value to decrease run time. The center (not the start) of the first period is now aligned with ; the start time. ; ; add_tilt: Increment the default dipole tilt used by the model with ; a user provided tilt in degrees. Result will be produced with TSY_DEFAULT_TILT+ADD_TILT ; Value can be set to an N length array an M length array or a single element array. ; N is the number of time elements for the data. M is the number of periods in the time interval.(determined by the period keyword) ; If single element is provided the same correction will be applied to all periods. ; If an N length array is provided, the data will be re-sampled to an M length array. Consequently, if ; the values change quickly, the period may need to be shortened. ; ; get_tilt: Returns the dipole_tilt parameter used for each period. ; Returned value has a number of elements equal to the value returned by get_nperiod ; ; set_tilt: Alternative alternative dipole_tilt value rather than the geopack tilt. ; This input can be an M length array, and N length array or a single elemnt. ; Value can be set to an N length array an M length array or a single element array. ; N is the number of time elements for the data. M is the number of periods in the time interval.(determined by the period keyword) ; If an N length array is provided, the data will be re-sampled to an M length array. Consequently, if ; the values change quickly, the period may need to be shortened. ; Notes: ; 1) set_tilt will cause add_tilt to be ignored ; 2) Due to this routine adding IGRF to the returned field, you cannot use set_tilt = 0 and give input ; position values in SM coordinates; input position values are required to be in GSM coordinates due to the ; IGRF calculation ; ; exact_tilt_times (optional): Set this keyword to avoid grouping similar times (default 10 minutes) and instead ; recalculate the dipole tilt at each input time ; ; get_nperiod: Returns the number of periods used for the time interval= ceil((end_time-start_time)/period) ; ; storm: Use the storm-time version of the T01 model ; ; geopack_2008 (optional): Set this keyword to use the latest version (2008) of the Geopack ; library. Version 9.2 of the IDL Geopack DLM is required for this keyword to work. ; ;Returns: an Nx3 length array of field model data (T01 + IGRF) or -1L on failure ; ;Example: ; mag_array = t01(time_array,pos_array,pdyn_array,dsti_array,yimf_array,zimf_array,g1_array,g2_array) ; mag_array = t01(time_array,pos_array,pdyn_array,dsti_array,yimf_array,zimf_array,g1_array,g2_array,period=10) ; ;Notes: ; 1. Relies on the IDL/Geopack Module provided by Haje Korth JHU/APL ; and N.A. Tsyganenko NASA/GSFC, if the module is not installed ; this function will fail. ; 2. Sums the contribution from the internal field model and the ; external field model. ; 3. Has a loop with number of iterations = (tarray[n_elements(t_array)]-tarray[0])/period ; This means that as period becomes smaller the amount time of this ; function should take will grow quickly. ; 4. Position units are in earth radii, be sure to divide your normal ; units by 6371.2 km to convert them. ; 6371.2 = the value used in the GEOPACK FORTRAN code for Re ; 5.Find more documentation on the inner workings of the model, ; any gotchas, and the meaning of the arguments at: ; http://geo.phys.spbu.ru/~tsyganenko/modeling.html ; -or- ; http://ampere.jhuapl.edu/code/idl_geopack.html ; ; 6. Definition of G1 and G2 can be found at: ; http://modelweb.gsfc.nasa.gov/magnetos/data-based/Paper220.pdf ; http://modelweb.gsfc.nasa.gov/magnetos/data-based/Paper219.pdf ; ; $LastChangedBy: jwl $ ; $LastChangedDate: 2021-06-24 16:12:40 -0700 (Thu, 24 Jun 2021) $ ; $LastChangedRevision: 30083 $ ; $URL: svn+ssh://thmsvn@ambrosia.ssl.berkeley.edu/repos/spdsoft/tags/spedas_5_0/external/IDL_GEOPACK/t01/t01.pro $ ;- function t01, tarray, rgsm_array,pdyn,dsti,yimf,zimf,g1,g2,period = period,$ add_tilt=add_tilt,get_tilt=get_tilt,set_tilt=set_tilt,get_nperiod=get_nperiod,$ get_period_times=get_period_times,storm=storm,geopack_2008=geopack_2008, exact_tilt_times=exact_tilt_times ;sanity tests, setting defaults if undefined(geopack_2008) then geopack_2008=0 if undefined(exact_tilt_times) then exact_tilt_times=0 if igp_test(geopack_2008=geopack_2008) eq 0 then return, -1L if ~n_elements(tarray) then begin message, /continue, 'tarray must be set' return, -1L endif if ~n_elements(rgsm_array) then begin message, /continue, 'rgsm_array must be set' return, -1L endif if ~n_elements(pdyn) then begin message, /continue, 'pdyn must be set' return, -1L endif if ~n_elements(dsti) then begin message, /continue, 'dsti must be set' return, -1L endif if ~n_elements(yimf) then begin message, /continue, 'yimf must be set' return, -1L endif if ~n_elements(zimf) then begin message, /continue, 'zimf must be set' return, -1L endif if ~n_elements(g1) then begin message, /continue, 'g1 must be set' return, -1L endif if ~n_elements(g2) then begin message, /continue, 'g2 must be set' return, -1L endif if not keyword_set(period) then period = 60 if period le 0. then begin message, /continue, 'period must be positive' return, -1L endif t_size = size(tarray, /dimensions) pdyn_size = size(pdyn, /dimensions) dsti_size = size(dsti, /dimensions) yimf_size = size(yimf, /dimensions) zimf_size = size(zimf, /dimensions) g1_size = size(g1,/dimensions) g2_size = size(g2,/dimensions) r_size = size(rgsm_array, /dimensions) if n_elements(t_size) ne 1 then begin message, /continue, 'tarray has incorrect dimensions' return, -1L endif if n_elements(pdyn_size) ne 1 then begin message, /continue, 'pdyn_array has incorrect dimensions' return, -1L endif if n_elements(dsti_size) ne 1 then begin message, /continue, 'dsti_array has incorrect dimensions' return, -1L endif if n_elements(yimf_size) ne 1 then begin message, /continue, 'yimf_array has incorrect dimensions' return, -1L endif if n_elements(zimf_size) ne 1 then begin message, /continue, 'zimf_array has incorrect dimensions' return, -1L endif if n_elements(g1_size) ne 1 then begin message, /continue, 'g1_array has incorrect dimensions' return, -1L endif if n_elements(g2_size) ne 1 then begin message, /continue, 'g2_array has incorrect dimensions' return, -1L endif if n_elements(r_size) ne 2 || r_size[1] ne 3 then begin message, /continue, 'rgsm_array has incorrect dimensions' return, -1L endif if t_size[0] ne r_size[0] then begin message, /continue, 'number of times in tarray does not match number of positions in rgsm_array' return, -1L endif if pdyn_size[0] eq 0 then begin pdyn_array = replicate(pdyn,t_size) endif else if t_size[0] ne pdyn_size[0] then begin message, /continue, 'number of times in tarray does not match number of elements in pdyn_array' return, -1L endif else pdyn_array = pdyn if dsti_size[0] eq 0 then begin dsti_array = replicate(dsti,t_size) endif else if t_size[0] ne dsti_size[0] then begin message, /continue, 'number of times in tarray does not match number of elements in dsti_array' return, -1L endif else dsti_array = dsti if yimf_size[0] eq 0 then begin yimf_array = replicate(yimf,t_size) endif else if t_size[0] ne yimf_size[0] then begin message, /continue, 'number of times in tarray does not match number of elements in yimf_array' return, -1L endif else yimf_array = yimf if zimf_size[0] eq 0 then begin zimf_array = replicate(zimf,t_size) endif else if t_size[0] ne zimf_size[0] then begin message, /continue, 'number of times in tarray does not match number of elements in zimf_array' return, -1L endif else zimf_array = zimf if g1_size[0] eq 0 then begin g1_array = replicate(g1,t_size) endif else if t_size[0] ne g1_size[0] then begin message, /continue, 'number of times in tarray does not match number of elements in g1_array' return, -1L endif else g1_array = g1 if g2_size[0] eq 0 then begin g2_array = replicate(g2,t_size) endif else if t_size[0] ne g2_size[0] then begin message, /continue, 'number of times in tarray does not match number of elements in g2_array' return, -1L endif else g2_array = g2 if n_elements(tarray) gt 1 then begin idx = where((tarray[1:t_size[0]-1] - tarray[0:t_size[0]-2]) lt 0,nonmonotone_times) if nonmonotone_times gt 0 then begin dprint,'Warning some times are non monotonic, this may cause unreliable results' endif endif ;defaults to NaN so it will plot properly in tplot and to prevent ;insertion of spurious default dindgen values out_array = make_array(r_size, /DOUBLE, VALUE = !VALUES.D_NAN) tstart = tarray[0] tend = tarray[t_size - 1L] i = 0L ts = time_struct(tarray) if ~exact_tilt_times then begin ; The start time is now the center of the first period, rather than the start, so add an extra 1/2 period ct = 0.5D + (tend-tstart)/period nperiod = ceil(ct) endif else nperiod = n_elements(tarray) period = double(period) parmod = dblarr(t_size, 10) parmod[*, 0] = pdyn_array parmod[*, 1] = dsti_array parmod[*, 2] = yimf_array parmod[*, 3] = zimf_array parmod[*, 4] = g1_array parmod[*, 5] = g2_array ;validate parameters related to geodipole_tilt if arg_present(get_nperiod) then begin get_nperiod = nperiod endif if arg_present(get_tilt) then begin get_tilt = dblarr(nperiod) endif ;return the times at the center of each period if arg_present(get_period_times) then begin if ~exact_tilt_times then begin get_period_times = tstart + dindgen(nperiod)*period endif else get_period_times=tarray endif if n_elements(add_tilt) gt 0 then begin if n_elements(add_tilt) eq 1 then begin tilt_value = replicate(add_tilt[0],nperiod) endif else if n_elements(add_tilt) eq nperiod then begin tilt_value = add_tilt endif else if n_elements(add_tilt) eq t_size[0] then begin ;resample tilt values to period intervals, using middle of sample if ~exact_tilt_times then begin period_abcissas = tstart + dindgen(nperiod)*period endif else begin period_abcissas = tarray endelse tilt_value = interpol(add_tilt,tarray,period_abcissas) endif else begin dprint,'Error: add_tilt values do not match data values or period values' return,-1 endelse endif if n_elements(set_tilt) gt 0 then begin if n_elements(set_tilt) eq 1 then begin tilt_value = replicate(set_tilt[0],nperiod) endif else if n_elements(set_tilt) eq nperiod then begin tilt_value = set_tilt endif else if n_elements(set_tilt) eq t_size[0] then begin ;resample tilt values to period intervals, using middle of sample if ~exact_tilt_times then begin period_abcissas = tstart + dindgen(nperiod)*period endif else begin period_abcissas = tarray endelse tilt_value = interpol(set_tilt,tarray,period_abcissas) endif else begin dprint,'Error: set_tilt values do not match data values or period values' return,-1 endelse endif tilt = 0.0D ; ensure tilt always defined while i lt nperiod do begin ; Default to last calculated value, in case no points lie in this interval if n_elements(get_tilt) gt 0 then begin get_tilt[i] = tilt endif if exact_tilt_times then begin idx = [i] endif else begin ;find indices of points to be input this iteration idx1 = where(tarray ge tstart + i*period - period/2.0D) idx2 = where(tarray le tstart + (i+1)*period - period/2.0D) idx = ssl_set_intersection(idx1, idx2) endelse if idx[0] ne -1L then begin id = idx[0] ;recalculate geomagnetic dipole if geopack_2008 then begin geopack_recalc_08, ts[id].year,ts[id].doy, ts[id].hour, ts[id].min, ts[id].sec, tilt = tilt endif else begin geopack_recalc, ts[id].year,ts[id].doy, ts[id].hour, ts[id].min, ts[id].sec, tilt = tilt endelse rgsm_x = rgsm_array[idx, 0] rgsm_y = rgsm_array[idx, 1] rgsm_z = rgsm_array[idx, 2] ;calculate internal contribution if geopack_2008 then begin geopack_igrf_gsw_08,rgsm_x, rgsm_y, rgsm_z, igrf_bx, igrf_by,igrf_bz endif else begin geopack_igrf_gsm,rgsm_x, rgsm_y, rgsm_z, igrf_bx, igrf_by,igrf_bz endelse ;account for user tilt. if n_elements(tilt_value) gt 0 then begin if n_elements(set_tilt) gt 0 then begin tilt = tilt_value[i] endif else if n_elements(add_tilt) gt 0 then begin tilt = tilt+tilt_value[i] endif endif if n_elements(get_tilt) gt 0 then begin get_tilt[i] = tilt endif ;calculate external contribution ;iopt = kp+1 geopack_t01, parmod[id, *], rgsm_x, rgsm_y, rgsm_z, t01_bx, t01_by, t01_bz, tilt = tilt, storm = storm ;total field out_array[idx, 0] = igrf_bx + t01_bx out_array[idx, 1] = igrf_by + t01_by out_array[idx, 2] = igrf_bz + t01_bz endif i++ endwhile return, out_array end