;+ ;NAME: barrel_sp_fold_m3.pro ;DESCRIPTION: BARREL mid-level spectral folding routine ; method3 = two file-based spectral shapes, single drm ; ;REQUIRED INPUTS: ;subspec background subtracted count spectrum ;subspecerr its error bars ;modlfile Input model spectrum. Required format is ; starting energy boundary, ending energy boundary, flux ; it will be interpolated to phebins if necessary. Comment ; lines beginning with characters not = '0123456789.-' are ; allowed at the start. ;secondmodlfile Second input model spectrum. ;drm response matrix for correct payload altitude and chosen PID ; of electrons ;phebins energy channel boundaries (length = length of spectrum + 1) ;phmean energy channel centers (should have length = length of spectrum) ; -- this is for the photons dimension ;phwidth energy channel widths (should have length = length of spectrum) ; -- this is for the photons dimension ;ctwidth energy channel widths (should have length = length of spectrum) ; -- this is for the counts dimension ;usebins subset of energy channels (count space) to actually use for fitting ;maxcycles Maximum number of times to try rescaling range for fit parameters ; ;OPTIONAL INPUTS: ;quiet Don't make graphs + screen output ;verbose show some debugging info as fits go along ; ;OUTPUTS: ;params best fit parameters ;param_ranges ranges on best fit parameters (1 sigma) (2x2 array) ;modvals values of the fit function at the centers of the energy bins (first component) ;secondmodvals values of the fit function at the centers of the energy bins (second component) ;chisquare chi-square (not reduced) ;dof degrees of freedom associated with chisquare ; ;CALLS: ;barrel_sp_fitgrid3.pro ; ;STATUS: ; ;TO BE ADDED: ; ;REVISION HISTORY: ;Version 1.0 DMS 8/18/12 ;Version 3.4 DMS 4/17/14 -- save elecmodel for best fit e- spectrum ;- pro barrel_sp_fold_m3, subspec, subspecerr, modlfile, secondmodlfile, drm, phebins, phmean, phwidth, ctwidth, usebins, maxcycles, $ params, param_ranges, elecmodel,modvals, secondmodvals, chisquare, dof, quiet=quiet, verbose=verbose barrel_sp_readmodelspec, modlfile, phebins, phmean, modelspec1 barrel_sp_readmodelspec, secondmodlfile, phebins, phmean, modelspec2 ;Initial starting parameter is equal parts of each model tryspec1 = (modelspec1*phwidth) # drm tryspec2 = (modelspec2*phwidth) # drm ;Find a starting normalization by scaling area of model and data; ;start with the assumption that each component carries half the counts. startnorm1 = total( subspec[usebins]*ctwidth[usebins] ) / total( tryspec1[usebins]*ctwidth[usebins] ) / 2. startnorm2 = total( subspec[usebins]*ctwidth[usebins] ) / total( tryspec2[usebins]*ctwidth[usebins] ) / 2. ;Try a starting range around these trial values. If the minimum ;chi-square is not on the boundary, zoom in. If it is, zoom out. ;In either case, recenter. points = 10 ;always run a 21x21(x21) grid scaling = [0.5,0.5] ;[norm1,norm2]: best values +/- 50% if keyword_set(verbose) then $ print,'iter#', 'startnorm1','startnorm2','bestnorm1','bestnorm2','scalenorm1','scalenorm2','bestchi',$ format='(a8,4a11,2a13,a10)' ;Iterate the fit, adjusting the scale dynamically: for i=0, maxcycles-1 do begin barrel_sp_fitgrid3, subspec, subspecerr, modelspec1, modelspec2, drm, phmean, phwidth, usebins, startnorm1, $ startnorm2, points, scaling, bestnorm1, bestnorm2, bestnorm1n, bestnorm2n, modvals, secondmodvals, $ chiarray, bestchi, norm1array, norm2array ;;if best value is not on boundary, zoom in or finish. ;;Note that zooming in or out on scalingdrm doesn't do anything if ;;you aren't using two drms. if abs(bestnorm1n) NE points and scaling[0] GE 0.001 then scaling[0] /= 2.5 if abs(bestnorm2n) NE points and scaling[1] GE 0.001 then scaling[1] /= 2.5 ;;If scaling is now very fine, break. Note that the last values of the ;;scaling parameters recorded here aren't really the last ;;values used, the last value used could be 2.5 times higher in one or more: if scaling[0] LT 0.001 and scaling[1] LT 0.001 then break if abs(bestnorm1n) EQ points then scaling[0] *= 2.0 if abs(bestnorm2n) EQ points then scaling[1] *= 2.0 if keyword_set(verbose) then $ print,i,startnorm1,startnorm2,bestnorm1,bestnorm2,scaling[0],scaling[1],bestchi,$ format='(i8,4f11.3,2f13.6,f13.4)' startnorm1 = bestnorm1 startnorm2 = bestnorm2 endfor ;If it never got to the finest scale, break with error: if scaling[0] GT 0.001 or scaling[1] GT 0.001 then $ message, ' Fit failed to converge in maximum number of cycles.' ;Set most output variables (either 2 or 3 best-fit params depending on ;treatment of response matrices: params = [bestnorm1, bestnorm2] chisquare = bestchi dof = n_elements(usebins) - 2 ;Only one thing left: the error on the parameters. This requires more ;effort. Here we will wander radially outwards until we find that the ;whole boundary has chisq > chimin ;Always center on the best value: startnorm1 = bestnorm1 startnorm2 = bestnorm2 points = 10 ;Create masks for the outer boundary of the chi-square space: edges1 = intarr(2*points+1,2*points+1) edges2 = intarr(2*points+1,2*points+1) edges1[0,*] = 1 edges1[2*points,*] = 1 edges2[*,0] = 1 edges2[*,2*points] = 1 ;Create initial values for error bar search: scaling = [0.1, 0.1] ;first guess scaling0 = scaling minscaling = scaling goingup = [0,0] if keyword_set(verbose) then print,'Starting search for error contour.' for i=0, maxcycles-1 do begin barrel_sp_fitgrid3, subspec, subspecerr, modelspec1, modelspec2, drm, phmean, phwidth, usebins, startnorm1, $ startnorm2, points, scaling, bestnorm1, bestnorm2, bestnorm1n, bestnorm2n, modvals, secondmodvals, $ chiarray, bestchi, norm1array, norm2array ;;First see if the contour is completely closed: ;;Look for chisq < min_chisq + 1 on boundary: w1 = where(edges1 and (chiarray LE chisquare + 1.),nw1) w2 = where(edges2 and (chiarray LE chisquare + 1.),nw2) nw=[nw1,nw2] ;;If the boundary is entirely outside of the chi-square contour, zoom ;;in by a factor of 2, unless you had already zoomed out, in which ;;case you've actually identified the right scale: if (total(nw) EQ 0) then begin if (total(goingup) EQ 2) then break for j=0,1 do if (not goingup[j]) then scaling[j] /= 2.0 continue endif ;;If boundary not entirely clear, take each axis separately, and ;;expand or contract the scaling: for j=0,1 do begin if (nw[j] GT 0) then begin goingup[j] = 1 scaling[j] *= 2.0 endif else begin if (not goingup[j]) then scaling[j] /= 2.0 endelse endfor if keyword_set(verbose) then begin print,i,startnorm1,startnorm2,bestnorm1,bestnorm2,scaling[0],scaling[1],bestchi,$ format='(i8,4f11.3,2f13.6,f13.4)' ; This is a useful diagnostic check on the contour changing algorithm: ; contour,chiarray,levels=[chisquare+1.,chisquare+3.,chisquare+20.] endif endfor ;Now that we've found the appropriate scaling (within a factor ;of 2 of the point where the last good fit appears on the boundary), ;do one very fine map of chisquare space to find the error bars: points = 40 barrel_sp_fitgrid3, subspec, subspecerr, modelspec1, modelspec2, drm, phmean, phwidth, usebins, startnorm1, $ startnorm2, points, scaling, bestnorm1, bestnorm2, bestnorm1n, bestnorm2n, modvals, secondmodvals, $ chiarray, bestchi, norm1array, norm2array ;Pick out the subset of points within the min(chisquare)+1. contour: w = where(chiarray LT chisquare + 1., nw) if nw EQ 0 then message, 'Failure in finding error bars.' ;This makes up the last needed output parameter: ranges of the parameters param_ranges = [ [min(norm1array[w]),max(norm1array[w])],[min(norm2array[w]),max(norm2array[w])] ] ;Added in v3.4: electron spectrum model values elecmodel= modelspec1*bestnorm1 + modelspec2*bestnorm2 end